• Title/Summary/Keyword: Sheet Beam

Search Result 370, Processing Time 0.037 seconds

Precision measuring of burrs on sheet metal using the laser (레이저를 이용한 박판 버의 정밀측정)

  • 신홍규;홍남표;김헌영;김병희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1824-1827
    • /
    • 2003
  • The sheet metal shearing process is normally used in the precision elements such as semi-conductor components. In precision elements, burrs usually reduce the quality of machined parts and cause interference, jamming and misalignment during assembly procedures and because of their sharpness, they can be safety hazard to personnel. Furthermore, not only burrs are hard to predict and avoid, but also deburring, the process of removing burrs, is time-consuming and costly. In order to get the burr-free parts, therefore, we developed the precise burr measuring system using the laser. The laser burr measuring system consists of the laser probe, the photo detector, the achromatic doublet lens, and the rotary & the X-Y table. In previous reports, we used simple vertical measuring method. But, as we used relatively bigger laser spot diameter and had the limited reflection angle, it was difficult to obtain the precise measuring results. So called, the spot size effect makes the profile of burr measured distorted and the burr height measured smaller. By introducing the novel laser measuring method which employing the achromatic lens system and the tilting mechanism, we could make the spot size smaller and get the appropriate beam direction angle. Through the experiments, the accuracy of the developed system is proved. The burr height measured during the punching process can be used for automatic deburring and in-situ aligning.

  • PDF

The Effective Young's Modulus of Model Ice Sheet in Ice Basin (빙해수조 모형빙판의 유효탄성계수 산출)

  • Lee, Jae-Hwan;Choi, Bong-Kyun;Kim, Tae-Wan;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.315-322
    • /
    • 2015
  • In this paper, the theory of rectangular plate on the elastic foundation is used to get the relation equation between the effective Young’s modulus and the ice sheet deflection by applying the characteristic length concept, since the model ice sheet is rectangular shape in KRISO (Korea Research Institute for Ships and Ocean Engineering) ice basin. The obtained relation equation is equal to that of using the circular plate theory. A device is made and used to measure the deflection of ice plate using LVDT (Linear Variable Differential Transformer) for several loading cases and the procedure of experiments measuring the deflection used for getting the Young’s modulus is explained. In addition, the flexural strength value obtained through flexural strength experiments is compared with that of finite element analysis using the obtained effective Young’s modulus. Also, a nonlinear FEA (Finite Element Analysis) of cantilever ice beam is done with eroding effect and LS-DYNA result shows the fracture of brittle ice under 1 mm/s velocity load.

Soot Measurement in an Optically Accessible Diesel Engine Using Laser Sheet (2nd reprot: The Measurement for diameter and number density of Soot) (레이저시트광을 이용한 가시화 디젤엔진에서의 Soot 계측(제2보 : Soot 입경분포 및 수밀도 계측))

  • 이명준;박태기;하종률;정성식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.37-45
    • /
    • 2000
  • The technique of laser sheet beam has been applied to optically accessible diesel engine for the quantitative measurement of soot. The results provide the information for us for reduction of soot in diesel engine. We used both LIS nad LII techniques simultaneously in this study. LIS and LII images show the quantitative distribution of the soot concentration in an optically accessible diesel engine. In this study, several results were obtained by the simultaneous measurement of LIS and LII technique. The diameter and number density of soot in combustion chamber of the test engine were obtained from ATDC 20$^{\circ}$ to 110$^{\circ}$ . The increase rate of soot diameter was about 40$^{\circ}$ between ATDC 20$^{\circ}$and 110$^{\circ}$. And the number density of soot decreased significantly between ATDC 20$^{\circ}$and 40$^{\circ}$.

  • PDF

Numerical Analysis on the Mechanical Press Joining for the Sheet Metal with a Circular Hole (중공 박판의 기계적 프레스 결합에 관한 해석)

  • Lee, Se-Jung;Kim, Min-Woong;Lee, Jae-Won;Lee, Sang-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1453-1458
    • /
    • 2009
  • This study is to apply the mechanical press joining method to join two kinds of sheet metals with circular holes by mechanical pressing instead of laser beam. Usage of the mechanical pressing avoids the thermal deformation of sheet metals which occurs inevitably in laser joining. A die design has been proposed to make the mechanical press joining applicable with finite element analysis. Five design factors related to the joining force have been selected and applied to the Taguchi method for optimization. Among five factors, 'Forming Depth' and 'Punch Corner Radius' have been revealed to be the most influential ones.

Flexural Strengthening Effect on R.C Beam with Structural Damage (구조적 손상을 입은 R.C보의 휨보강 효과)

  • Kim, Sung-Yong;Han, Duck-Jeon;Shin, Chang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.147-156
    • /
    • 2004
  • The Rehabilitation and repair of structurally deteriorated, reinforced concrete structures will be highly demanded in the near future. The purpose of this study is to investigate whether damaged beams that crack and deflection are developed by bending moment are restored to the former state. In conclusion, when specimens strengthened with Steel Plate, CFS(Carbon Fiber Sheet) and CFRP-Grid(Carbon Fiber Reinforced Plastic-Grid) are compared with standard specimen, flexural capacity is increased and ductility and energy absorbtion capacity are similar with undamaged specimen. Therefore Steel Plate, CFS(Carbon Fiber Sheet) and CFRP-Grid (Carbon Fiber Reinforced Plastic-Grid) have highly efficiency as material of flexural strengthening.

Adhesive Shear Strength of Carbon Fiber Sheet (탄소섬유시트의 전단부착강도에 관한 연구)

  • Kim, Yoon-Chil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.109-116
    • /
    • 2008
  • In order to test the adhesive capacity of carbon fiber sheet, a static loading method for bending-behavior-type beam specimens, cut in half was developed and test was conducted with compressive strength of concrete set as the test parameter. The tests were performed to prescribe adhesive shear strength based upon the result of shear failure as well as verification of testing method. First of all, the test method proved to be reliable in determining the adhesive shear strength. The test result also exhibited two types of variations in adhesive shear strength. Among two types of variations, average and minimum values for adhesive shear strength, relatively stable results, 3.41MPa and 2.11MPa, respectively. Particularity in the adhesive shear strength with respect to compressive shear strength was not found.

Finite element development of a Beam-column connection with CFRP sheets subjected to monotonic and cyclic loading

  • Rahimipour, Arash;Hejazi, Farzad;Vaghei, Ramin;Jaafar, Mohd Saleh
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1083-1096
    • /
    • 2016
  • Beam-column joints are recognized as the weak points of reinforcement concrete frames. The ductility of reinforced concrete (RC) frames during severe earthquakes can be measured through the dissipation of large energy in beam-column joint. Retrofitting and rehabilitating structures through proper methods, such as carbon fiber reinforced polymer (CFRP), are required to prevent casualties that result from the collapse of earthquake-damaged structures. The main challenge of this issue is identifying the effect of CFRP on the occurrence of failure in the joint of a cross section with normal ductility. The present study evaluates the retrofitting method for a normal ductile beam-column joint using CFRP under monotonic and cyclic loads. Thus, the finite element model of a cross section with normal ductility and made of RC is developed, and CFRP is used to retrofit the joints. This study considers three beam-column joints: one with partial CFRP wrapping, one with full CFRP wrapping, and one with normal ductility. The two cases with partial and full CFRP wrapping in the beam-column joints are used to determine the effect of retrofitting with CFRP wrapping sheets on the behavior of the beam-column joint confined by such sheets. All the models are subjected to monotonic and cyclic loading. The final capacity and hysteretic results of the dynamic analysis are investigated. A comparison of the dissipation energy graphs of the three connections shows significant enhancement in the models with partial and full CFRP wrapping. An analysis of the load-displacement curves indicates that the stiffness of the specimens is enhanced by CFRP sheets. However, the models with both partial and full CFRP wrapping exhibited no considerable improvement in terms of energy dissipation and stiffness.

Flexural Behaviors of Reinforced Concrete Beams Strengthened with Glass Fiber Sheets (유리섬유시트로 보강된 RC 보의 휨 거동에 관한 연구)

  • Kim, Seong-Do;Cho, Baik-Soon;Seong, Jin-Wook
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.388-395
    • /
    • 2009
  • To investigate the flexural behavior of RC beams strengthened with glass fiber sheets, 1 control beam and 8 strengthened beams (4 NU-beams without U-shaped band and 4 U-beams with U-shaped band) are tested. The variables of experiment are composed of the number of glass fiber sheets and the existence of U-shaped band, etc. The maximum load was increased by 48% and 34%, and the flexural rigidity by 920% and 880% for NU-beam and U-beam, respectively, compared with those of the control beam. The ductility ratios were 1.43$\sim$2.60 for NU-beam and U-beam. The experimental results showed that the strengthening system with U-shaped band controls the premature debonding and provides a more ductile failure mode than the strengthening system without U-shaped band. It can be found from the load-deflection curves that as the number of fiber sheets is increased, the maximum strength and the flexural rigidity is increased. The experimental results are compared with the analytical results of nonlinear flexural behaviors for strengthened RC beam. The experimental and analytical results were well agreed.

Geometrically nonlinear analysis of sandwich beams under low velocity impact: analytical and experimental investigation

  • Salami, Sattar Jedari;Dariushi, Soheil
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.273-283
    • /
    • 2018
  • Nonlinear low velocity impact response of sandwich beam with laminated composite face sheets and soft core is studied based on Extended High Order Sandwich Panel Theory (EHSAPT). The face sheets follow the Third order shear deformation beam theory (TSDT) that has hitherto not reported in conventional EHSAPT. Besides, the two dimensional elasticity is used for the core. The nonlinear Von Karman type relations for strains of face sheets and the core are adopted. Contact force between the impactor and the beam is obtained using the modified Hertz law. The field equations are derived via the Ritz based applied to the total energy of the system. The solution is obtained in the time domain by implementing the well-known Runge-Kutta method. The effects of boundary conditions, core-to-face sheet thickness ratio, initial velocity of the impactor, the impactor mass and position of the impactor are studied in detail. It is found that each of these parameters have significant effect on the impact characteristics which should be considered. Finally, some low velocity impact tests have been carried out by Drop Hammer Testing Machine. The contact force histories predicted by EHSAPT are in good agreement with that obtained by experimental results.

Nonlinear low-velocity impact of graphene platelet-reinforced metal foam beam with geometrical imperfection

  • Yi-Han Cheng;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.609-620
    • /
    • 2024
  • The impact problem of imperfect beams is crucial in engineering fields such as water conservancy and transportation. In this paper, the low velocity impact of graphene reinforced metal foam beams with geometric defects is studied for the first time. Firstly, an improved Hertz contact theory is adopted to construct an accurate model of the contact force during the impact process, while establishing the initial conditions of the system. Subsequently, the classical theory was used to model the defective beam, and the motion equation was derived using Hamilton's principle. Then, the Galerkin method is applied to discretize the equation, and the Runge Kutta method is used for numerical analysis to obtain the dynamic response curve. Finally, convergence validation and comparison with existing literature are conducted. In addition, a detailed analysis was conducted on the sensitivity of various parameters, including graphene sheet (GPL) distribution pattern and mass fraction, porosity distribution type and coefficient, geometric dimensions of the beam, damping, prestress, and initial geometric defects of the beam. The results revealed a strong inhibitory effect of initial geometric defects on the impact response of beams.