• 제목/요약/키워드: Sheet Analysis

검색결과 1,855건 처리시간 0.028초

Zn-Ni계 합금도금강판의 마찰특성에 관한 연구 (Frictional characteristics of electro Zn-Ni alloy coated steel sheets)

  • 김영석;박기철;조재억
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1807-1818
    • /
    • 1991
  • 본 연구에서는 자동차용 Zn-Ni계 합금 전기도금 강판(electro Zn-Ni alloy coated steel sheet, EGN)에서 도금층 중의 Ni함량에 따른 금층의 표면특성이 마찰거 동에 미치는 영향과 윤활유 종류에 따른 Ni 함량별 마찰특성을 파악하여 최적 스탬핑 조건을 도출하는데 기여하고자 한다.

LINEAR INSTABILITY ANALYSIS OF A WATER SHEET TRAILING FROM A WET SPACER GRID IN A ROD BUNDLE

  • Kang, Han-Ok;Cheung, Fan-Bill
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.895-910
    • /
    • 2013
  • The reflood test data from the rod bundle heat transfer (RBHT) test facility showed that the grids in the upper portion of the rod bundle could become wet well before the arrival of the quench front and that the sizes of liquid droplets downstream of a wet grid could not be predicted by the droplet breakup models for a dry grid. To investigate the water droplet generation from a wet grid spacer, a viscous linear temporal instability model of the water sheet issuing from the trailing edge of the grid with the surrounding steam up-flow is developed in this study. The Orr-Sommerfeld equations along with appropriate boundary conditions for the flow are solved using Chebyshev series expansions and the Tau-Galerkin projection method. The effects of several physical parameters on the water sheet oscillation are studied by determining the variation of the temporal growth rate with the wavenumber. It is found that a larger relative steam velocity to water velocity has a tendency to destabilize the water sheet with increased dynamic pressure. On the other hand, a larger ratio of steam boundary layer to the half water sheet thickness has a stabilizing effect on the water sheet oscillation. Droplet diameters downstream of the spacer grid predicted by the present model are found to compare reasonably well with the data obtained at the RBHT test facility as well as with other data recently reported in the literature.

강널말뚝으로 보강된 점토지반거동의 수치해석 (Numerical Analysis on the Behavior of Clayey Foundation Reinforced with Steel Sheet Pile)

  • 양극영;이대재;정진섭
    • 한국농공학회지
    • /
    • 제44권1호
    • /
    • pp.142-154
    • /
    • 2002
  • This study was performed to investigate constraint effects of deformation (heaving, lateral displacement) of clayey foundation reinforced with sheet pile at the tip of banking on soft ground, under intact state (natural) and the state of vertical drain respectively. The following results are obtained. 1. In view of reduction in heaving or lateral displacement, sheet pile is not supposed to be of use. 2. Sheet pile is effective only when vertical drain is installed for acceleration of consolidation and gradual loading is applied.

판재의 점진성형법에 대한 기초연구 (A Basic Study on Incremental Forming Method for Sheet Metal)

  • 심명섭;박종진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.128-131
    • /
    • 2000
  • The technology of incremental forming has drawn attention for small-batch production of sheet metal components. In the present investigation a forming tool containing a freely-rotating ball was developed and applied to forming experiments. Deformation characteristics including crack occurred during forming with this tool was examined for full annealed Al1050 sheet. The finite element analysis was successfully applied to this special type of forming process, and provided results that agree well with the measurements.

  • PDF

박막구조에 따른 초전도전원장치의 동작특성 해석 (Analysis of the Operational Characteristics of Superconducting Power supply Considering the structure of the Sheets)

  • 김호민;윤용수;안민철;고태국;한태수;오상수
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권4호
    • /
    • pp.164-169
    • /
    • 2001
  • This paper deals with comparison of characteristics of continuous-sheet type low-Tc superconducting (LTS) power supply and discrete-sheet type LTS power supply. These characteristics have been analyzed through experiments. These power supplies consist of two exciters, a rotor, a stator, and a LTS load. A continuous-sheet type has a single continuous niobium (Nb) sheet attached to the inner surface of on the stator. In the case of discrete-sheet type, four separated Nb sheets are used. this experiment is using 1.81 mH LTS magnet load and maximum 30 A dc exciter current. A discrete-sheet type is expected to produce much better pumping rate than a continuous-sheet type. The experimental observations have been compared with the theoretical predictions. In this experiment, the maximum pumping-current has reached about 926 A.

  • PDF

An approach of seismic design for sheet pile retaining wall based on capacity spectrum method

  • Qu, Honglue;Li, Ruifeng;Hu, Huanguo;Jia, Hongyu;Zhang, Jianjing
    • Geomechanics and Engineering
    • /
    • 제11권2호
    • /
    • pp.309-323
    • /
    • 2016
  • As the forefront of structural design method, capacity spectrum method can be applied conveniently, and through this method, deformation demand of structure can be considered. However, there is no research for the seismic application in the structure of sheet pile retaining wall to report. Therefore, focusing on laterally loaded stabilizing sheet pile wall, which belongs to flexible cantilever retaining structure and meets the applying requirement of capacity spectrum method from seismic design of building structure, this paper studied an approach of seismic design of sheet pile wall based on capacity spectrum method. In the procedure, the interaction between soil and structure was simplified, and through Pushover analysis, seismic fortification standard was well associated with performance of retaining structure. In addition, by comparing the result of nonlinear time history analysis, it suggests that this approach is applicable.

동적 유한요소해석을 이용한 Dent 발생에 대한 연구 (An Analysis of Dent Formation by Dynamic Finite Element Method)

  • 차성훈;신명수;김종봉
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.58-65
    • /
    • 2010
  • For the improvement of fuel consumption, the study on the use of lightweight material or thinner sheet have been carried out in automotive industry. With the need for the use of thinner sheet, the dent resistance became one of the major concern in th design of exterior panels in automotive industry. Many studies have been carried out for the dent resistance by experiment or quasi-static numerical simulation. In this study, the dent formation behavior is investigated by dynamic finite element analysis using ABAQUS. Dent formation may be affected by many factors such as sheet thickness, material properties, pre-strain, and sheet curvature. The effect of these factors on dent resistance is investigated. From the analysis following three conclusions are derived. First, dent resistance become hard as the sheet curvature radius increases. Second, dynamic dent resistance is mainly affected by bending stress rather than tensile stress. Third, the pre-strain itself do not give any guidance for dynamic dent resistance and dynamic dent resistance have to be decided considering the strain hardening and thickness reduction together. The results are considered to be reliable and useful to improve the dent damage of automotive panels.

회귀분석을 활용한 비정형롤판재성형 공정의 형상 예측 (Shape Prediction of Flexibly-reconfigurable Roll Forming Using Regression Analysis)

  • 박지우;윤준석;김정;강범수
    • 소성∙가공
    • /
    • 제25권3호
    • /
    • pp.182-188
    • /
    • 2016
  • Flexibly-reconfigurable roll forming (FRRF) is a novel sheet metal forming technology conducive to producing multi-curvature surfaces by controlling the strain distribution along longitudinal direction. In FRRF, a sheet metal is shaped into the desired curvature by using reconfigurable rollers and gaps between the rollers. As FRRF technology and equipment are under development, a simulation model corresponding to the physical FRRF would aid in investigating how the shape of a sheet varies with input parameters. To facilitate the investigation, the current study exploits regression analysis to construct a predictive model for the longitudinal curvature of the sheet. Variables considered as input parameters are sheet compression ratio, radius of curvature in the transverse direction, and initial blank width. Samples were generated by a three-level, three-factor full factorial design, and both convex and saddle curvatures are represented by a quadratic regression model with two-factor interactions. The fitted quadratic equations were verified numerically with R-squared values and root mean square errors.

전자기력을 이용한 박판 성형공정의 해석적 연구 (Numerical Simulation of Thin Sheet Metal Forming Process using Electromagnetic Force)

  • 서영호;허성찬;구태완;송우진;강범수;김정
    • 소성∙가공
    • /
    • 제17권1호
    • /
    • pp.35-45
    • /
    • 2008
  • Electromagnetic Forming (EMF) technology such as magnetic pulse forming, which is one of the high velocity forming methods, has been used for the joining and forming process in various industry fields. This method could be derived a series of deformation of sheet metal by using a strong magnetic field. In this study, numerical approach by finite element simulation of the electromagnetic forming process was presented. A transient electromagnetic finite element code was used to obtain the numerical model of the time-varying currents that are discharged through the coil in order to obtain the transient magnetic forces. Also, the body forces generated in electromagnetic field were used as the loading condition to analyze deformation of thin sheet metal workpiece using explicit dynamic finite element code. In this study, after finite element analysis for thin sheet metal forming process with free surface configuration was performed, analytical approach for a dimpled shape by using EMF was carried out. Furthermore, the simulated results of the dimpled shape by EMF were compared with that by a conventional solid tool in view of the deformed shape. From the results of finite element analysis, it is confirmed that the EMF process could be applied to thin sheet metal forming.

박판금속 성형공정 해석시스템 개발 (Development of Analysis System for Sheet Metal Forming)

  • 정완진;조진우
    • 소성∙가공
    • /
    • 제8권1호
    • /
    • pp.29-37
    • /
    • 1999
  • An analysis system for sheet metal forming(SAT_STAMP) has been developed to improve the design and tryout process by predicting the deformation behavior more precisely. This analysis system consists of forming analysis, springback analysis and post processor modules. The more accurate prediction of stress history can be achieved due to the improved contact algorithm. Continuous simulation of sequential processes can be carried out conveniently without interruption by the improved data management of the developed system. The error of data transfer between forming analysis and springback analysis is minimized using the proper shell element. Several benchmark test results and practical results are presented to show the effectiveness and reliability of this program.

  • PDF