• 제목/요약/키워드: Shearography

검색결과 66건 처리시간 0.021초

모듈레이팅 레이저를 이용한 ESPI 시스템 개발 (Development of ESPI System Using a Modulating LASER)

  • 이근영;강영준;박낙규;이동환
    • 한국정밀공학회지
    • /
    • 제25권3호
    • /
    • pp.93-100
    • /
    • 2008
  • Laser interferometry is widely used as a measuring system in many fields because of its high resolution and ability to measure a broad area in real-time all at once. In conventional LASER interferometry, for example Out-of-plane ESPI(Electronic Speckle Pattern Interferometry), In plane ESPI, Shearography and Holography, it uses PZT or other components as a phase shift instrumentation to extract 3D deformation data, vibration mode and others. However, in most cases PZT has some disadvantages, which include nonlinear errors and limited time of use. In the present study, a new type of LASER interferometry using a laser diode is proposed. Using LASER Diode Sinusoidal Phase Modulating (LD-SPM) interferometry, the phase modulation can be directly modulated by controlling the LASER Diode injection current thereby eliminating the need for PZT and its components. This makes the interferometry more compact. This paper reports on a new approach to the LD Modulating interferometry that involves four-buckets phase shift method. This study proposes a four-bucket phase mapping algorithm, which was developed to have a guaranteed application, to stabilize the system in the field and to be a user-friendly GUI. In this paper, the theory for LD wavelength modulation and sinusoidal phase modulation of LD modulating interferometry is shown. Four-bucket phase mapping algorithm is then introduced.

Nondestructive Testing of Residual Stress on the Welded Part of Butt-welded A36 Plates Using Electronic Speckle Pattern Interferometry

  • Kim, Kyeongsuk;Jung, Hyunchul
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.259-267
    • /
    • 2016
  • Most manufacturing processes, including welding, create residual stresses. Residual stresses can reduce material strength and cause fractures. For estimating the reliability and aging of a welded structure, residual stresses should be evaluated as precisely as possible. Optical techniques such as holographic interferometry, electronic speckle pattern interferometry (ESPI), Moire interferometry, and shearography are noncontact means of measuring residual stresses. Among optical techniques, ESPI is typically used as a nondestructive measurement technique of in-plane displacement, such as stress and strain, and out-of-plane displacement, such as vibration and bending. In this study, ESPI was used to measure the residual stress on the welded part of butt-welded American Society for Testing and Materials (ASTM) A36 specimens with $CO_2$ welding. Four types of specimens, base metal specimen (BSP), tensile specimen including welded part (TSP), compression specimen including welded part (CSP), and annealed tensile specimen including welded part (ATSP), were tested. BSP was used to obtain the elastic modulus of a base metal. TSP and CSP were used to compare residual stresses under tensile and compressive loading conditions. ATSP was used to confirm the effect of heat treatment. Residual stresses on the welded parts of specimens were obtained from the phase map images obtained by ESPI. The results confirmed that residual stresses of welded parts can be measured by ESPI.

레이저 다이오드를 이용한 정현적 위상변조 간섭계에 대한 연구 (A study on Sinusoidal Phase Modulating interferometer using laser diode)

  • 표기영;박낙규;이근영;강영준;김경석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.926-929
    • /
    • 2005
  • Recently, laser interferometer is widely used as a measuring system in many fields because of its high resolution and its ability to measure a board area in real-time ail at once. In conventional laser interferometer, for examples Out of plane ESPI, In plane ESPI, Shearography and Holography, it uses PZT or other components as a phase shift instrumentation to extract 3-D deformation data, vibration mode and others. However, in most cases PZT has some disadvantages, which include noli-linear errors and limited time of use. In present study, a new type of laser interferometer using a laser diode(LD) is proposed. Using Laser Diode Sinusoidal Phase Modulating(LD-SPM) interferometer, the phase modulation can be directly modulated by controlling the LD injection current thereby eliminating the need for PZT components.

  • PDF

광섬유형과 벌크형 ESPI를 이용한 압력용기 내부 결함 측정에 관한 비교 연구 (Performance Comparison between Optical Fiber Type ESPI and Bulk Type ESPI for the Internal Defect in Pressure Vessel)

  • 김성종;강영준;홍경민;이재훈;최낙정
    • 비파괴검사학회지
    • /
    • 제32권2호
    • /
    • pp.177-184
    • /
    • 2012
  • ESPI는 비접촉 비파괴 방식으로 측정 대상체의 진동이나 변형에 따른 3차원 형상 정보의 취득에 효과적으로 사용되어 왔다. 측정 대상체와 계측 환경에 따라 면내, 면외, 전단간섭 등으로 구분할 수 있으며, 간섭계를 구성하는 광소자의 형태에 따라 벌크형과 광섬유형으로 나뉜다. 광섬유형 시스템은 크기가 작고 휴대하기 편하여 시스템 구성 및 정렬이 매우 용이하다. 본 논문에서는 광섬유 면외 ESPI를 이용한 광학계를 구성하였고, PZT를 이용하여 위상 변조를 ${\pi}/2$만큼 주기적으로 가하여 CCD 카메라에서 이미지를 획득하였다. 획득한 스페클 패턴 이미지는 후처리 과정을 통해 측정 대상체의 3차원 위상 정보를 얻게 된다. 내부 결함이 존재하는 압력용기에 질소 가스를 주입하여 변화되는 phase map을 관찰하였고, 또한 phase map의 후처리를 통하여 압력에 따른 대상체의 변화를 3차원으로 확인하였다.

Modulating Laser를 이용한 ESPI System algorithm 개발에 관한 연구 (Research about ESPI System Algorithm Development that Use Modulating Laser)

  • 김성종;강영준;박낙규;이동환
    • 한국정밀공학회지
    • /
    • 제26권7호
    • /
    • pp.65-72
    • /
    • 2009
  • Laser interferometry is widely used as a measuring system in many fields because of its high resolution and its ability to measure a broad area in real-time all at once. In conventional laser interferometry, for example out-of-plane ESPI (Electronic Speckle Pattern Interferometry), in plane ESPI, shearography and holography, it uses PZT or other components as a phase shift instrumentation to extract 3-D deformation data, vibration mode and others. However, in most cases PZT has some disadvantages, which include nonlinear errors and limited time of use. In the present study, a new type of laser interferometry using a laser diode is proposed. Using Laser Diode Sinusoidal Phase Modulating (LD-SPM) interferometry, the phase modulation can be directly modulated by controlling the laser diode injection current thereby eliminating the need for PZT and its components. This makes the interferometry more compact. This paper reports on a new approach to the LD (Laser Diode) Modulating interferometry that involves four-frame phase shift method. This study proposes a four-frame phase mapping algorithm, which was developed to have a guaranteed application, to stabilize the system in the field and to be a user-friendly GUI. In this paper, the theory for LD wavelength modulation and sinusoidal phase modulation of LD modulating interferometry is shown. Using modulating laser and research of measurement algorithm does comparison with existent ESPI measurement algorithm. Algorithm measures using GPIB communication through most LabVIEW 8.2. GPIB communication does alteration through PC. Transformation of measurement object measures through modulating laser algorithm that develops. Comparison of algorithm of modulating laser developed newly with existent PZT algorithm compares transformation price through 3-D. Comparison of 4-frame phase mapping, unwrapping, 3-D is then introduced.

듀얼 빔 전단간섭계를 이용한 압연방향에 따른 기계구조용 탄소강의 면내 변위 정량적 측정에 대한 연구 (A Study on the Quantitative Measurement of In-plane Displacement of Carbon Steel for Machine Structures according to Rolling Direction using a dual-beam Shear Interferometer)

  • 강찬근;김상채;김한섭;이항서;정현일;정현철;송재근;김경석
    • 한국기계가공학회지
    • /
    • 제20권4호
    • /
    • pp.39-48
    • /
    • 2021
  • In this paper, an in-plane deformation measuring system using a dual-beam shear interferometer was constructed to measure the in-plane deformation of the measuring object. The in-plane deformation of the object was quantitatively measured according to the load and surface treatment conditions of the object. We also verified the reliability of the proposed technique by simultaneously performing the technique with an electronic speckle pattern interferometry system (ESPI), which is another laser application measurement technology. Digital shearography directly measures the deformation gradient or strain components and has the advantages of being full-field, noncontact, highly sensitive, and robust. It offers a much higher measurement sensitivity compared with noncoherent measurement methods and is more robust and applicable to in-field tests.