[논문] - 비파괴검사학회지 Journal of the Korean Society for Nondestructive Testing Vol. 32, No. 2 (2012. 4)

광섬유형과 벌크형 ESPI를 이용한 압력용기 내부 결함 측정에 관한 비교 연구

Performance Comparison between Optical Fiber Type ESPI and Bulk Type ESPI for the Internal Defect in Pressure Vessel

김성종*, 강영준**[†], 홍경민*, 이재훈*, 최낙정**

Seong-Jong Kim*, Young-June Kang**[†], Kyung-Min Hong*, Jae-Hoon Lee* and Nak-Jung Choi**

초 록 ESPI는 비접촉·비파괴 방식으로 측정 대상체의 진동이나 변형에 따른 3차원 형상 정보의 취득에 효 과적으로 사용되어 왔다. 측정 대상체와 계측 환경에 따라 면내, 면외, 전단간섭 등으로 구분할 수 있으며, 간섭계를 구성하는 광소자의 형태에 따라 벌크형과 광섬유형으로 나뉜다. 광섬유형 시스템은 크기가 작고 휴대하기 편하여 시스템 구성 및 정렬이 매우 용이하다. 본 논문에서는 광섬유 면외 ESPI를 이용한 광학계 를 구성하였고, PZT를 이용하여 위상 변조를 π/2만큼 주기적으로 가하여 CCD 카메라에서 이미지를 획득하 였다. 획득한 스페클 패턴 이미지는 후처리 과정을 통해 측정 대상체의 3차원 위상 정보를 얻게 된다. 내부 결함이 존재하는 압력용기에 질소 가스를 주입하여 변화되는 phase map을 관찰하였고, 또한 phase map의 후 처리를 통하여 압력에 따른 대상체의 변화를 3차원으로 확인하였다.

주요용어: 광섬유형 ESPI, 벌크형 ESPI, 압력용기, 내부 결함, 면외변위 ESPI

Abstract An optical defect detection method using ESPI(electronic speckle pattern interferometry) is proposed. ESPI is widely used as a non-contact measurement system which show deformation and phase map in real time. ESPI can be divided as the in-plane, out-of-plane and shearography by operation principle and target object and also divided with bulk type and optic fiber type by the optic configurations. This paper is focused on optic fiber type out-of-plane ESPI, which has the following advantages: (1) low cost; (2) reduction of the unreliable factors generated by separated optic components; (3) simplification of the optic configuration; (4) great reduction of volume; (5) flexibility, to be easily designed into different structures to adapt to inaccessible environments such as pipeline cavity and so on.

Keywords: Optic Fiber Type ESPI, Bulk Type ESPI, Pressure Vessel, Internal Defect, Out-of-Plane ESPI

1. 서 론

 야에 각광을 받으면서, 높은 정밀도로 기계의 미

 ESPI(electronic speckle pattern interferometry) 방

 법은 실시간에 가까운 빠른 측정 속도, 높은 정

 밀도, 비파괴/비접촉식 측정 방식 등의 차별성을

 앞세워 산업 현장 전반에서 기존의 측정 방법을

대신해 나가고 있다. 최근 들어 정밀제조산업 분

[접수일: 2012. 1. 5, 수정일: 2012. 2. 24, 게재확정일: 2012. 3. 2] *전북대학교 대학원 기계설계학과, **전북대학 교 기계설계공학부, ⁺Corresponding Author: Department of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, Korea (E-mail: yjkang@jbnu.ac.kr)

고 전단변형(shearography)[5] 등으로 구분할 수 있으며, 간섭계를 구성하는 광소자의 형태에 따 라 벌크형(bulk type)과 광섬유형(optic fiber type) 으로 나뉜다.

본 논문에서는 광섬유형 ESPI가 기존에 이루어 진 벌크형 ESPI와의 차별성을 보고, 실험을 통하 여 광섬유형 ESPI의 신뢰성을 확인하는데 초점 을 두었다. 광섬유형 ESPI는 시스템 구성에 있어 서 벌크형 ESPI보다 비용이 적게 들고, 분리된 광학 구성 요소에 의해 발생되는 예상치 못한 요 인이 적으며, 광학계 구성이 단순하다. 또한, 시 스템을 구성할 수 있는 장소에 구애 받지 않으며 측정 부위에 접근하기 힘든 부분에도 유동성 있 게 개조가 가능한 장점을 가지고 있다.

본 논문에서는 내부 결함이 존재하는 압력용기 시편을 가지고, 기존에 연구가 이루어진 벌크형 out-of-plane ESPI를 재연하여 압력용기 축 방향 내부 결함을 측정하고, 동일한 방법으로 광섬유 형 out-of-plane ESPI를 구성하여 변형된 결함의 깊이를 정량적으로 검출할 수 있는 방법을 개발 하고, 벌크형 ESPI 방법과 광섬유형 ESPI 방법의 결함 깊이 측정의 오차를 평가하여 광섬유형 ESPI의 적용이 타당함을 확인하였다.

2. 이 론

2.1. 전자 스페클 패턴 간섭계(ESPI) 원리

기존 간섭법은 물체에 하중이 가해지면 물체 표면의 변위를 간섭무늬(fringe) 형태로 나타내고 이러한 간섭무늬는 물체의 변형과 관계가 있다. 이 방법은 우수한 장점을 가지고 있음에도 불구 하고 폭넓게 사용되지는 못하고 있는데, 그 주된 이유는 화상 처리 과정(image processing)과 후처 리 과정(post processing)을 만족시켜야 하고 광학 적 기술에 숙련되지 않은 사용자가 만족할 만한 간섭무늬를 만들어 내기가 쉽지 않기 때문이며, 화상 처리 과정과 후처리 과정을 완벽히 수행하 는데 많은 시간이 소요된다. 이러한 제약을 극복 하기 위하여 CCD카메라를 이용하여 기록된 영 상을 컴퓨터를 통해 이미지 처리 과정을 거쳐 간 섭무늬를 생성하여 표면 변위 분석과 형상의 측 정을 실시간으로 측정할 수 있는 ESPI 기법이 개발되었다[5,7].

Fig. 1 Schematic diagram of optic fiber ESPI

Fig. 1은 광섬유형 스페클 패턴 간섭계의 개략 도이다. 레이저 광원은 50:50의 분리 비율을 갖는 광섬유 커플러에 의해서 기준 광과 대상체에 조 사되는 광으로 나뉜다. 측정 대상체의 표면에서 반사된 광과 기준광은 빛 결합기를 통하여 CCD 카메라에서 스페클 간섭 패턴을 발생시키며 각 픽셀의 출력은 간섭이론으로부터 다음 식과 같이 표현될 수 있다[10].

 $I(x,y,t) = I'(x,y) + I''(x,y)\cos[\phi(x,y) + \delta(t)]$ (1)

 (I': 진폭, I'': 간섭패턴의 가시도, φ: 대상체의 위상정보, δ(t): 기준광에 의한 간섭위상)

식(1)에서 얻고자 하는 것은 측정 대상체의 표 면 형상에 비례하는 위상정보 $\phi(x,y)$ 이고, 식에 서와 같이 코사인 함수의 위상 형태로 얻어지므 로 이 위상을 추출하는 과정이 필요하다. 이는 두 간섭 광 사이에 일정한 위상 변화를 주어 얻 어진 다수의 스페클 패턴을 비교하는 과정을 통 하여 얻을 수 있다. 본 논문에서는 기준 광의 위 상을 조절하여 얻은 4개의 스페클 패턴을 연산하 여 위상을 추출하는 방법을 사용하였다. 기준 광 의 위상 조절은 실린더 형태의 PZT(piezoelectric transducer)에 광섬유를 20회 감은 후 전압을 인가 하였다. 적절한 위상 변조 신호를 가하여 $\delta(t)$ 에 0에서 2π 까지 $\pi/2$ 의 간격으로 변하게 할 경우 얻 게 되는 4개의 스페클 패턴은 다음 식과 같다.

$$\begin{split} I_{1}(x,y) &= I'(x,y) + I''(x,y) \cos[\phi(x,y)] \\ I_{2}(x,y) &= I'(x,y) + I''(x,y) \cos[\phi(x,y) + \pi/2] \\ I_{3}(x,y) &= I'(x,y) + I''(x,y) \cos[\phi(x,y) + \pi] \\ I_{4}(x,y) &= I'(x,y) + I''(x,y) \cos[\phi(x,y) + 3\pi/2] \end{split}$$
(2)

4개의 간섭 출력을 아래의 연산 과정에 대입하 면 대상체의 위상정보 φ를 구할 수 있다[10].

$$\phi(x,y) = \tan^{-1} \left[\frac{I_4 - I_2}{I_1 - I_3} \right]$$
(3)

3.실험

3.1. 광학계 구성

3.1.1. 광섬유형 ESPI

Fig. 2는 광섬유형 ESPI의 구성 사진이며, Fig. 3은 개략도 이다.

광원은 DPSS 532 nm CW 레이저가 사용되었 다. 빔의 경로는 Thorlab[4]사에서 제작한 총 길 이 1 m*2의 광섬유를 이용하였다. 그 중심에는 빔을 분리하는 50:50 배율의 커플러가 연결되어 물체광과 기준광으로 나눠진다. 물체광은 직접 압력용기에 조사되고, 그 빔은 압력용기에서 난 반사가 이뤄져 CCD 카메라에 입력된다. 기준광 은 PZT를 거쳐 렌즈에서 빔을 모아 CCD 카메라

Fig. 2 Photograph of optic fiber ESPI

Fig. 3 Schematic diagram of optic fiber ESPI

에 입력된다. PZT는 PI사에서 제작한 실린더 형 태의 PZT PT-130.14를 사용하였다. 이 PZT는 최 대 전압을 가했을 때 16 µm까지 두께가 확장된 다. 또한, 압력용기에 가압하기 위하여 99.9%의 질소 가스를 사용하여 대상체를 변형시켰다.

3.1.2. 벌크형 ESPI

Fig. 4는 벌크형 ESPI의 구성 사진이며, Fig. 5 는 개략도 이다.

광섬유형 ESPI의 정밀도에 대해 비교하기 위해 기존에 실험이 완료된 벌크형 ESPI를 재연하여 같은 조건으로 측정하였다. 벌크형 ESPI는 광섬 유형 ESPI와 달리 진동이나 외란이 민감하기 때 문에 방진 테이블을 띄웠으며, 광 테이블의 전 방향을 폐쇄하였다. 벌크형 ESPI의 구성은 같은 스펙의 레이저를 사용하였지만, 시스템의 구성상 위상 변조는 PI[4]사의 P821.10의 전후 방향의 PZT를 사용하였다. 이 PZT는 최대 전압을 가했

Fig. 4 Photograph of bulk ESPI

Fig. 5 Schematic diagram of bulk ESPI

을 때 15 μm까지 이동한다. 실험 방법은 광섬유 형 ESPI와 동일하다.

3.2. 실험 방법

시편은 Fig. 6과 같은 형태로 제작되었다.

재질은 탄소강이고, 시편의 길이는 330 mm, 외 경 100 mm, 두께 5 mm이다. 양단에 나사산을 가 공하여 캡을 부착시킬 수 있도록 하였고, 한 쪽 캡의 중앙에는 구멍을 낸 뒤 나사산을 가공한 후 유니언을 부착시켜 압축가스를 압력용기 내부로 공급할 수 있도록 하였다. 그리고 압력용기의 표 면은 확산, 조사되는 레이저 빔이 균일하게 반사 될 수 있도록 하기 위하여 무광택 백색 도료를 도포하였다. 시편의 내부 결함은 축 방향으로 존 재한 결함으로 정하였고, 결함 폭 0.6 mm, 결함 길이 15 mm와 본 논문의 목적인 결함의 깊이를 측정하기 위해 3개의 시편에 결함의 깊이를 각각 1 mm, 2 mm, 3 mm로 방전 가공하였다.

압력용기의 변형을 여기시키는 방법은 질소 가 스를 사용하여 내부를 가압하는 방법을 사용하였 으며, 각 3개의 시편에 276, 414, 552, 690, 758 kPa (40,60,80,100,110 psi)의 압력으로 가압하 고 축 방향의 내부 결함에 대하여 측정하였다. 압력용기의 최대압력을 758 kPa로 정한 것은 그 이상의 압력이 들어갈 경우 미세한 가스 누출이 있었기 때문에 안전을 고려하여 758 kPa까지만 가압하였다.

4. 실험 결과 및 고찰

4.1. Data 추출 방법

광섬유형과 벌크형 ESPI의 위상지도 data를 정 확히 같은 조건에서 정량적으로 비교 분석하기 위해 상용화된 프로그램을 이용하였다. 독일에서 개발한 Q-100 Micro-star 장비에 포함된 IstraMS 2.4.2 프로그램이다. 이 프로그램은 위상지도의 3 차원 형상으로 이미지화 시켜서 competed tilt (최 고점과 최저점 자동 맞춤기능)을 사용하여 최고 점의 평준화와 최저점의 평준화를 시켜 결함 부 위에 라인 프로파일을 얻어 결함의 깊이 변화를 정량적으로 측정하여 광섬유형과 벌크형을 비교 분석할 수 있었다.

4.2. 내부 결함 측정 결과

Fig. 7은 광섬유형과 벌크형 ESPI를 이용하여 축 방향 내부 결함에 대하여 각각의 압력을 가압 하여 얻은 위상지도를 나타내고 있는 실험 결과 들이다. 맨 윗줄부터 결함 깊이 1 mm, 2 mm, 3 mm의 내부에 결함이 있는 광섬유형과 벌크형 의 결과를 비교하여 나타낸 위상지도의 이미지이 다. 그리고 왼쪽부터 276, 414, 552, 690, 758 kPa 의 압력별로 결과를 나타낸 것이다. 결함이 1 mm, 276 kPa일 때 두 시스템 모두 위상지도에 서 결함의 위치는 확인이 가능하였으나, 정확한 결함인지 가늠하기 어렵다. 이것은 압력용기에 결함 깊이가 작고, 압력이 저압이기 때문에 전체 적으로 균일하게 팽창하여 결함 부위의 변위 구 배가 없기 때문에 나타나는 결과로 판단된다. 그 외의 위상지도의 결함 깊이가 깊을수록, 압력이 높을수록 결함 부위의 명암이 짙어 집을 쉽게 확 인 할 수 있었다.

Fig. 6 Photograph of specimen

Fig. 7 Experimental result of each system

4.3. 광섬유형과 벌크형 ESPI의 오차 분석

Fig. 8는 각 시편의 깊이에 다른 압력별 3D 형 상과 라인 프로파일의 대표이다. 광섬유형과 벌 크형 ESPI의 실험을 시편 당 각 10회 이상 수행 하였으며, 각 시스템에서 얻어진 평균값의 형상 이다. 각 시스템의 정량적인 분석은 라인 프로파 일의 최고점과 최소점 사이의 차를 계산하여 얻 을 수 있었다. Fig. 8의 결함 깊이 1 mm, 압력 276 kPa에서 볼 수 있듯이 광섬유형과 벌크형 모 두 3차원 형상에서 내부 결함을 식별하기 어려웠 다. 하지만, 결함 깊이 1 mm의 552 kPa 압력부터 정량적인 결함을 검출하는데 용이했으며, 3D 형 상에서도 가시적으로 결함을 확인할 수 있었다. Fig. 8에서 알 수 있듯이 각 시스템의 3D 형상과 라인 프로파일은 모두 비슷한 양상을 보이며, 광 섬유형도 기존의 벌크형 시스템과 결과를 비교할 수 있었다. Table 1은 라인 프로파일을 통해 계산 된 결함 부위 변형의 오차 평균값을 정리하여 비 교한 표이다. Table 2~6은 1 mm ~ 3 mm 결함 깊 이 시편에 대한 압력별 각각 10회 측정한 후 결 과에 대한 오차율을 나타낸 것이다.

Table 1 Measured average value of internal defect

	depth		Pressure (kPa)				
	(mm)	туре	276	414	552	690	758
	1	Fiber	0.038	0.056	0.081	0.100	0.117
		Bulk	0.043	0.059	0.082	0.100	0.117
	2	Fiber	0.149	0.213	0.291	0.349	0.432
	2	Bulk	0.152	0.210	0.210 0.290	0.350	0.430
	2	Fiber	0.213	0.352	0.502	0.600	0.718
	3	Bulk	0.208	0.350	0.500	0.630	0.720

Fig. 8 3D and line profile from 276 kPa

Pressure : 276kPa							
1-64	Measur	ed value					
depth	Bulk type ESPI(µm)	Optic fiber ESPI(µm)	(µm)	(%)			
		0.039	-0.004	9.30			
		0.039	-0.004	9.30			
		0.037	-0.006	13.95			
		0.038	-0.005	11.62			
1	0.042	0.039	-0.004	9.30			
Imm	0.043	0.036	-0.007	16.27			
		0.040	κPa error (μm) -0.004 -0.004 -0.004 -0.005 -0.004 -0.003 -0.003 -0.004 -0.003 -0.003 -0.004 -0.003 -0.004 -0.004 -0.026 0.002 0 0.001 -0.002 0 0.001 0 0.001 0 0.001 0 0.001	6.97			
		0.040	-0.003	6.97			
		0.036	-0.007	16.27			
		0.039	-0.004	9.30			
		0.142	-0.010	6.57			
		0.151	-0.001	0.65			
		0.126	-0.026	17.10			
		0.154	0.002	1.31			
2	0.152	0.155	0.003	1.97			
2mm	0.152	0.152	0	0			
		0.151	0.001	0.65			
		0.153	0.002	1.31			
		0.152	0	0			
		0.151	0.001	0.65			
		0.21	0	0			
		0.18	-0.03	14.28			
2	0.21	0.22	0.01	4.76			
3mm	0.21	0.20	-0.01	4.76			
		0.21(5회)	0	0			
		0.22	0.01	4.76			

Table 2 Deformed defect depth from pressure 276 kPa

Table 3	Deformed	defect	depth	from	pressure	414	kPa
---------	----------	--------	-------	------	----------	-----	-----

Pressure : 414kPa								
1-6	Measu	red value						
depth	Bulk type ESPI(µm)	Optic fiber ESPI(µm)	: 414kPa error fiber (µm) error (µm) 58 0.001 58 -0.001 58 -0.001 59 0.001 55 -0.004 54 0.005 58 -0.001 55 -0.004 54 0.005 55 -0.004 54 0.005 25 -0.004 54 0.005 21 0 22 0.01 23 0 32 0 37 0.02 35 0 36 0.01 34 -0.01 62 0	(%)				
		0.058	0.001	1.69				
		0.058	-0.001	1.69				
		0.058	-0.001	1.69				
		0.059	0.001	1.69				
1	0.050	0.055	-0.004	6.77				
111111	0.039	0.054	0.005	8.47				
		0.058	-0.001 1.0 -0.003 5.0	1.69				
		0.056		5.08				
		0.055	-0.004	6.77				
		0.055 0.054 0.058 0.056 0.055 0.054 0.21 0.20 0.21 0.22 0.21(2 ³)	0.005	8.47				
		0.21	0	0				
		0.20	0.01	4.76				
		0.21	0	0				
2mm	0.21	0.22	0.01	4.76				
		0.21(2회)	0	0				
		0.24	0.03	14.28				
		0.21(3회)	0	0				
		0.37	0.02	5.71				
		0.35	0	0				
3mm	0.35	0.36	0.01	2.85				
		0.34	-0.01	2.85				
		0.35(6회)	0	0				

Table 4 D	Deformed	defect	depth	from	pressure	552	kPa
-----------	----------	--------	-------	------	----------	-----	-----

Pressure : 552kPa							
dafaat	Measu	red value	orror	arror rata			
depth	Bulk type ESPI(µm)	Optic fiber ESPI(µm)	(µm)	(%)			
		0.082(2회)	0	0			
		0.083	0.001	1.21			
		0.082	0	0			
1mm	0.082	0.081(2회)	-0.001 1.	1.21			
		0.080(2회)	-0.002	2.43			
		0.079	-0.003	3.65			
		0.082	0	0			
		0.30	0.01	3.44			
2	0.20	0.30	0.01	3.44			
211111	0.29	0.28	-0.01	3.44			
		0.29(7회)	0	0			
		0.50(2회)	0	0			
		0.51	0.01	2			
3mm	0.50	0.50(5회)	0	0			
		0.51	0.01	2			
		0.50	0	0			

Table 5 Deformed defect depth from pressure 690 kPa

Pressure : 690kPa							
defect	Measur	ed value	orror	orror roto			
depth	Bulk type ESPI(µm)	Optic fiber ESPI(µm)	(µm)	(%)			
		0.102	0.002	2			
		0.100	0	0			
	0.100	0.102	0.002	2			
		0.098	-0.002	2			
1mm		0.101	0.001	1			
		0.100	0	0			
		0.102	0.002	2			
		0.100(2회)	0	0			
		0.097	$\begin{tabular}{ c c c c c c c } \hline value & error \\ (\mu m) & error \\ (\mu m) & ($	3			
		0.33	0.02	5.71			
2mm	0.35	0.36	0.01	2.85			
		0.35(8회)	0	0			
		0.63(5회)	0	0			
2	0.62	0.64	0.01	1.58			
511111	0.05	0.62	-0.01	1.58			
		0.63(3회)	0	0			

Table 6 Deformed defect depth from pressure 758 kPa

	Pressure : 758kPa								
dafaat	Measure	d value	orror	arrar rata					
depth	Bulk type ESPI(µm)	Optic fiber ESPI(µm)	(μm)	(%)					
		0.117(3회)	7(3회) 0 120 0.003	0					
		0.120	0.003	2.56					
		0.114	-0.003	2.56					
1mm	0.117	0.117	0	0					
		0.115 -0.002	-0.002	1.70					
		0.117	0	0					
		0.120(2회)	-0.003	2.56					
2	0.42	0.45	0.02	4.65					
211111	0.43	0.43(9회)	0	0					
2	0.72	0.72(9회)	0	0					
Sinm	0.72	0.70	-0.02	2.77					

Fig. 9 Measured value comparison of each pressure

Fig. 10 Average error of each pressure

Fig. 9은 벌크형 ESPI에서 정량적으로 측정된 평균값과 광섬유형 ESPI를 10회 이상 실험하여 정량적인 측정값을 압력별로 비교한 그림이다.

Fig. 10은 광섬유형과 벌크형 ESPI에서 얻어진 값의 평균 오차율이다. 압력이 276 kPa일 때, 결 함깊이 1 mm에서 오차율은 10.9%, 2 mm에서 오 차율은 3.0%, 3 mm에서는 오차율이 2.8%임을 확 인할 수 있다. 이 같은 이유는 압력이 작을 때는 압력용기가 전체적으로 균일하게 팽창하여 결함 부위의 변위 구배가 없기 때문에 나타난 결과이 다. 압력이 414 kPa일 때, 1 mm에서 오차율은 4.4%, 2 mm에서 오차율은 2.3%, 3 mm에서는 오 차율이 1.1%임을 확인하였으며, 압력이 552 kPa 일 때, 1 mm에서 오차율은 1.2%, 2 mm에서 1.0%, 3 mm에서 0.4% 임을 확인하였으며, 압력이 690 kPa일 때, 1 mm에서 오차율은 1.2%, 2 mm 에서 0.8%, 3 mm에서 0.3% 임을 확인하였으며, 압력이 758 kPa일 때, 1 mm에서 오차율은 1.1%, 2 mm에서 0.4%, 3 mm에서 0.2% 임을 확인하였 다. 이 오차율을 통하여 광섬유 ESPI는 압력이 414 kPa일 때, 98%의 신뢰성을 입증하였다. 따라서 실험 결과에서 볼 수 있듯이 결함 깊이 가 작고 낮은 압력에서는 측정된 값이 대부분 일 치하지 않음을 볼 수 있었고 결함 깊이가 크고

높은 압력에서는 거의 일치함을 볼 수 있다.

5. 결 론

본 논문은 휴대용 계측 시스템으로 산업 현장 에서 쉽고, 간단하게 이용할 수 있는 시스템을 구성하기 위하여 신뢰성이 입증된 벌크형 ESPI 와 오차율을 평가하여 광섬유형 ESPI의 신뢰성 을 입증하는데 그 목적을 두었다. 광섬유형 ESPI 는 벌크형 ESPI보다 외란의 영향을 적게 받고, 시스템 구성하는 시간을 단축시킬 수 있고, 소형 화에 용이하다. 광섬유형 ESPI는 방전가공을 통 한 임의의 결함에 대한 시편에 변형을 주었을 때 그 변형을 가시화 할 수 있었고, 물체 내부의 결 함으로 인한 국부적인 변형의 검출을 통하여 물 체 내부의 결함을 가시화하고 정량적인 비교가 가능하였으며, Fig. 10에서 보는 것과 같이 결함 깊이가 크고 높은 압력일수록 벌크형과 광섬유형 ESPI의 오차율이 감소되는 것을 볼 수 있다.

본 논문의 실험은 단순한 형태의 인공 제작된 결함에 대하여 수행되었으므로 이후 복잡하고 다 양한 형태의 결함에 대하여 연구가 진행되어야 할 것으로 판단된다. 그리고 현재 사용된 방법의 영상처리 시스템은 4-bucket이 이용되었지만, 이 것은 외부에 외란의 영향이 많이 작용되고, 웨이 팅 타임 즉, PZT의 히스테리시스 부분이 data를 얻는데 어느 정도의 오차 요소를 포함하고 있기 때문에 향후, 위와 같은 문제점들을 보완하기 위 해 웨이팅 타임이 짧은 2-bucket 시스템을 이용한 다면 기존의 계측 방법보다 좀 더 간단한 광학계 시스템 설계 및 신속하고 정밀한 계측 시스템을 구성할 수 있을 것이라 생각된다.

후 기

"이 논문은 2012년도 정부(교육과학기술부)의 재원으로 한국연구재단의 지원을 받아 수행된 기 초연구사업임(No. 2011-0026374)"

참고문헌

- [1] 문상준, 강영준, 백성훈, 김철중, "실시간 흘 로그래픽 간섭법을 이용한 압력용기의 내부 결함 측정법", 대한기계학회 논문집 A권, Vol. 20, No. 4, pp. 1233-1240 (1996)
- [2] 2004 ASME Boiler and Pressure Vessel Code, An International Code, Section XI: Rues for Inservice Inspection of Nuclear Power Plant Components, The American Society of Mechanical Engineers (2004)
- [3] 강영준, 이정식, 백성훈, 박승규, 이동환
 "ESPI와 FEM을 이용한 압력용기 결함 측정
 에 관한 연구", 한국정밀공학회지, Vol. 24,
 No. 12, pp. 104-110 (2007)
- [4] 김성종, 강영준, 박낙규, 이동환 "Modulating laser를 이용한 ESPI system algorithm 개발에 관한 연구", *한국정밀공학회지*, Vol. 26, No. 7, pp. 65-72 (2009)
- [5] Leland D. Melvin, Brooks A. Childers and James P. Fulton, "Quantitative analysis of a class of subsurface cracks using shearography and finite element modeling," *Review of Progress in Quantitative Nondestructive Evaluation*, Vol. 12, pp. 403-410 (1993)
- [6] J. W. Goodman, "Statistical properties of laser speckle patterns," Laser Speckle and Related phenomena Edited by J. C. Dainty, Springer

Germany, pp. 9 (1975)

- [7] R. Jones and C. Wykes, "Holographic and Speckle Interferometry," Cambridge University Press, pp. 146-148 (1989)
- [8] 문상준, 강영준, 백성훈, 김철중, "실시간 홀 로그래픽 간섭법을 이용한 압력용기의 내부 결함 측정법", 대한기계학회 논문집 A권, Vol. 20, No. 4, pp. 1233-1240 (1996)
- [9] David L. Mader, "Holographic and nonholographic NDT for nuclear and coal-fired power plants," *SPIE*, Vol. 604, pp. 37-56 (1986)
- [10] P. Hariharan, "Basic of Interferometry," Academic Press, pp. 95-98 (1992)
- [11] D. L. Mader, "Holographic and nonholographic NDT for nuclear and coal-fired power plants," *SPIE* Vol. 604, Holographic Nondestructive Testing, pp. 37-56 (1986)
- [12] A. E. Ennos, "Speckle Interferometry", Laser Speckle and Related Phenimena Edited by J. C. Daint, Springer Germany, p. 203 (1975)
- [13] Warren J. Mcgonnagle, "Nondestructive Testing," 2nd Ed., Mcgraw-Hill, pp. 92-178 (1961)
- [14] Ernest O. Doebelin, "Measurement Systems; Application and Design," 4th Ed., McGraw-Hill, pp. 251-253 (2009)