• Title/Summary/Keyword: Shearing test

Search Result 217, Processing Time 0.031 seconds

A Study of the Shearing Force as a Function Trim Punch Shape and Shearing Angle (트리밍펀치 형상과 전단 각에 따른 전단하중 특성에 관한 연구)

  • Yoo, C.K.;Won, S.T.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.77-82
    • /
    • 2015
  • By investigating the practical use of trim punch configurations for shearing of vehicle panels, the current study first reviews the shearing angle as part of the shearing die design. Based on this review, four different types of trim punch shapes (i.e., horizontal, slope, convex, and concave type) and shearing angles(i.e., 0.76°, 1.53°, 2.29°, 3.05°, 3.81°) were investigated. In order to conduct shearing experiments, four types of trim punch dies were made. The four trim punch dies were tested under various conditions. The experiments used the four trim punch shapes and the five shearing angles. The shearing force varied by shape and decreased from horizontal, slope, convex, to concave for the same shearing angle. The magnitude of shearing force showed differences between the convex and the concave shapes due to the influence of constrained shearing versus free shearing. The test results showed that compared to the horizontal trim punch shearing force, the decrease of the slope, convex, and concave shearing forces were 22.6% to 60.4%. Based on the results, a pad pressure of over 30% is suggested when designing a shearing die.

Analysis of Shearing Characteristics for Vibration Damping Sheet Metals Bonded with Dissimilar Sheet Metals (이종 접합 제진 판재의 전단 가공 특성 분석)

  • Lee, Y.D.;Cha, Y.H.;Kim, K.P.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.235-238
    • /
    • 2009
  • This study is performed to investigate shearing characteristics for vibration damping sheet metals which are bonded with dissimilar sheet metals. A shearing tool set is designed and manufactured and shearing tests with the tool set are conducted at varying the magnitude of clearance in order to analyze the shearing characteristics. The shearing characteristics are analyzed for burr height and shape of sheared faces with respect to the magnitude of clearance between the punch and the die. The shearing test results demonstrate that optimum clearance is $8{\sim}12%$ of the sheet thickness at the shearing of the vibration damping sheet metals and the shearing direction has to be controlled deriving occurrence of the burr at the thick sheet of the vibration damping sheet metals.

  • PDF

A Study on the Mechanical Properties of Wool Fabrics -The effect of the structural conditions of the fabrics- (모직물의 역학적 특성에 관한 연구)

  • 박정순
    • Journal of the Korean Home Economics Association
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 1989
  • In order to investigate the mechanical properties such as tensile, bending, shearing, thickness and weight of the wool fabrics were measured by KES-F system. Samples were classified into blend ratio, weave type, fabric count. Blend ratio was classified into two groups, which are P/W blended fabric (p=63~65%, w=35~37%) and all wool fabric. Weave type was classified into four groups, which are plain, 3 harness twill, 4harness twill, satin. Cloth count was classified into three groups, which are loose, medium, tight. Statistical analysis was performed using T-test, F-test. The results were as follows; 1. There was significant difference in the thickness, tensile, bending, shearing according to the blend ratio. 2. According the weave, there was significant difference in the bending, weight and thickness in the P/W blended fabrics. There was significant difference in the tensile, weight, thickness, bending, shearing, shearing hysterisis (2HG) in the all wool fabrics. 3. There was significant difference in the shearing properties according to the fabric count.

  • PDF

High-temperature Deformation Behavior of 5052 Aluminum Alloy for Hot Shearing Process (고온전단가공을 위한 5052 알루미늄 합금의 고온 변형거동)

  • Song, Shin-Hyung;Choi, Woo Chun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.177-181
    • /
    • 2016
  • Hot shearing is a method of producing various high-quality planar machine parts by using reduced punch load. In order to predict the results of this process, the deformation behavior of work material at elevated temperatures need to be studied. In this research, a tensile test was carried out for 5052 aluminum alloy at high temperatures of $240-540^{\circ}C$ and strain rates of 0.001-0.1/s. The results of the tensile tests were studied to predict the deformation of the alloy during the hot shearing process. The results showed that hot shearing within a temperature range of $340-440^{\circ}C$ and a strain rate rage of 0.001-01/s will be the most effective in reducing punch load and increasing the sheared edge in the case of 5052 aluminum alloy.

A study on shearing die design for window roller housing and die manufacture (창호용 롤러 하우징의 전단금형 설계 및 제작에 관한 연구)

  • Kim, Sei-hwan;Choi, Kye-kwang
    • Design & Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.35-39
    • /
    • 2014
  • Window roller housings are durable because high-quality source materials such as stainless steel is used in making them. After a series of precise structure analysis, their design is optimized. They are subject to repetitive driving tests of more 100,000 times, durability tests, impact resistance tests, corrosion tests and others. For a long time, gaps often occur in press molded products owing to serious squareness deformation and flatness deformation of them. Severe burrs in press molded products require frequent grinding, which leads to short life cycle and rough or unreliable movement of assembled roller housing, which, in turn, causes product defects. This study focuses on developing measures to resolve existing defects and to improve lifespan of dies by designing and making a window roller shearing die.

  • PDF

An Experiment of Improved Stow Net - Characteristics of Upthrust Float and Shearing Hood - (계량식 안강망의 실험연구)

  • Kim, Yong-Hae;Go, Gwan-Seo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.16 no.2
    • /
    • pp.61-67
    • /
    • 1980
  • Previously, we had experimented on the model of stow net under the various combination including water velocity, spherical floats and elevating floats with the shearing hoods instead of the upper beam, however we couldn't concern with their characteristics. Spherical floats maintain their buoyancy at the same level when the speed increases, only the drag increases and effects some reduction in the fishing height. To eliminate this shortcoming, floats have to some hydrodynamic lifting force which increases with increasing speed. Phillips float with a dish-shaped metal plate welded on at the lower part and synthetic upthrusting float were used for the experiment to compare with their characteristics. Six kinds of model shearing hood depend on the angle of attack were used to test the characteristic of the shearing hood. According to their results, when the angle of attack is 30\ulcorner, the lift and drag coefficient reveal 1. 36, 0.84 respectively. And also experimented on the 5X8cm shearing hood to investigate the suitability for the model stow net.

  • PDF

Two-axis latera I-shearing interferometer for performance test of lenses using a Dove prism (도브 프리즘을 이용한 렌즈 성능평가용 2축 층밀리기 간섭계)

  • 김승우;이혁교;김병창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.384-387
    • /
    • 1995
  • Two axes lateral-shearing interferometer(LSI) specially devised for production line inspection lenses is presented. The interferometer composed with four prisms and a dove prism can test the lens performance including asymmetric aspheric lens. The dove prism which rotates the input image with respect to optical axis makes it possible. The wavefront passing through the test lens is reconstsucted by the phase derivative obtained form the two axes LSI system. Zernike-polynomials fitting of this wavefront is presented for determinating quantitative aberration of aspherical lenses.

  • PDF

Mechanical and Rheological Properties of Rice Plant (수도(水稻)의 역학적(力學的) 및 리올러지 특성(特性)에 관(關)한 연구(硏究))

  • Huh, Yun Kun;Cha, Gyun Do
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.98-133
    • /
    • 1987
  • The mechanical and rheological properties of agricultural materials are important for engineering design and analysis of their mechanical harvesting, handling, transporting and processing systems. Agricultural materials, which composed of structural members and fluids do not react in a purely elastic manner, and their response when subjected to stress and strain is a combination of elastic and viscous behavior so called viscoelastic behavior. Many researchers have conducted studies on the mechanical and rheological properties of the various agricultural products, but a few researcher has studied those properties of rice plant, and also those data are available only for foreign varieties of rice plant. This study are conducted to experimentally determine the mechanical and the rheological properties such as axial compressive strength, tensile strength, bending and shear strength, stress relaxation and creep behavior of rice stems, and grain detachment strength. The rheological models for the rice stem were developed from the test data. The shearing characteristics were examined at some different levels of portion, cross-sectional area, moisture content of rice stem and shearing angle. The results obtained from this study were summarized as follows 1. The mechanical properties of the stems of the J aponica types were greater than those of the Indica ${\times}$ Japonica hybrid in compression, tension, bendingand shearing. 2. The mean value of the compressive force was 80.5 N in the Japonica types and 55.5 N in the Indica ${\times}$ Japonica hybrid which was about 70 percent to that of the Japonica types, and then the value increased progressively at the lower portion of the stems generally. 3. The average tensile force was about 226.6 N in the Japonica types and 123.6 N in the Indica ${\times}$ Japonica hybrid which was about 55 percent to that of the Japonica types. 4. The bending moment was $0.19N{\cdot}m$ in the Japonica types and $0.13N{\cdot}m$ in the Indica ${\times}$ Japonica hybrid which was 68 percent to that of the Japonica types and the bending strength was 7.7 MPa in the Japonica types and 6.5 MPa in the Indica ${\times}$ Japonica hybrid respectively. 5. The shearing force was 141.1 N in Jinju, the Japonica type and 101.4 N in Taebaeg, the Indica ${\times}$ Japonica hybrid which was 72 percent to that of Jinju, and the shearing strength of Taebaeg was 63 percent to that of Jinju. 6. The shearing force and the shearing energy along the stem portion in Jinju increased progressively together at the lower portions, meanwhile in Taebaeg the shearing force showed the maximum value at the intermediate portion and the shearing energy was the greatest at the portion of 21 cm from the ground level, and also the shearing strength and the shearing energy per unit cross-sectional area of the stem were the greater values at the intermediate portion than at any other portions. 7. The shearing force and the shearing energy increased with increase of the cross-sectional area of the rice stem and with decrease of the shearing angie from $90^{\circ}$ to $50^{\circ}$. 8. The shearing forces showed the minimum values of 110 N at Jinju and of 60 N at Taebaeg, the shearing energy at the moisture content decreased about 15 percent point from initial moisture content showed value of 50 mJ in Jinju and of 30 mJ in Taebaeg, respectively. 9. The stress relaxation behavior could be described by the generalized Maxwell model and also the compression creep behavior by Burger's model, respectively in the rice stem. 10. With increase of loading rate, the stress relaxation intensity increased, meanwhile the relaxation time and residual stress decreased. 11. In the compression creep test, the logarithmic creep occured at the stress less than 2.0 MPa and the steady-state creep at the stress larger than 2.0 MPa. 12. The stress level had not a significant effect on the relaxation time, while the relaxation intensity and residual stress increased with increase of the stress level. 13. In the compression creep test of the rice stem, the instantaneous elastic modulus of Burger's model showed the range of 60 to 80 MPa and the viscosities of the free dashpot were very large numerical value which was well explained that the rice stem was viscoelastic material. 14. The tensile detachment forces were about 1.7 to 2.3 N in the Japonica types while about 1.0 to 1.3 N in Indica ${\times}$ Japonica hybrid corresponding to 58 percent of Japonica types, and the bending detachment forces were about 0.6 to 1.1 N corresponding to 30 to 50 percent of the tensile detachment forces, and the bending detachment of the Indica ${\times}$ Japonica hybrid was 0.1 to 0.3 N which was 7 to 21 percent of Japonica types. 15. The detachment force of the lower portion was little bigger than that of the upper portion in a penicle and was not significantly affected by the harvesting period from September 28 to October 20. 16. The tensile and bending detachment forces decreased with decrease of the moisture content from 23 to 13 percent (w.b.) by the natural drying, and the decreasing rate of detachment forces along the moisture content was the greater in the bending detachment force than the tensile detachment force.

  • PDF

Systematic error calibration of 2-axis lateral shearing interferometer (2축 층밀리기 간섭계의 계통오차 보정)

  • 김승우;이혁교
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.2
    • /
    • pp.98-104
    • /
    • 2002
  • We present a new self-calibration method to remove the systematic error of a 2-axis lateral shearing interferometer that has been specially designed for optical testing of aspheric optics. The method takes multiple measurements by rotating the test optics and extracts the systematic error by fitting the measured wavefronts into the Zernike polynomials. The method works with arbitrary azimuthal angles for test optics rotation, which offers an advantage of correcting the error induced by the non-orthogonality of the two axes of wavefront shearing as well as the error caused by the optical components of the interferometer system itself.

Shear strength characteristics of a compacted soil under infiltration conditions

  • Rahardjo, H.;Meilani, I.;Leong, E.C.;Rezaur, R.B.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.35-52
    • /
    • 2009
  • A significantly thick zone of steep slopes is commonly encountered above groundwater table and the soils within this zone are unsaturated with negative pore-water pressures (i.e., matric suction). Matric suction contributes significantly to the shear strength of soil and to the factor of safety of unsaturated slopes. However, infiltration during rainfall increases the pore-water pressure in soil resulting in a decrease in the matric suction and the shear strength of the soil. As a result, rainfall infiltration may eventually trigger a slope failure. Therefore, understanding of shear strength characteristics of saturated and unsaturated soils under shearing-infiltration (SI) conditions have direct implications in assessment of slope stability under rainfall conditions. This paper presents results from a series of consolidated drained (CD) and shearing-infiltration (SI) tests. Results show that the failure envelope obtained from the shearing-infiltration tests is independent of the infiltration rate. Failure envelopes obtained from CD and SI tests appear to be similar. For practical purposes the shear strength parameters from the CD tests can be used in stability analyses of slopes under rainfall conditions. The SI tests might be performed to obtain more conservative shear strength parameters and to study the pore-water pressure changes during infiltration.