• 제목/요약/키워드: Shear-Thinning

검색결과 239건 처리시간 0.025초

다점 핀포인트 금형에서 균형충전이 가능한 사출금형 구조 (On the new mold structure with multi-point gate for filling-balance mold)

  • 권윤숙;정영득
    • Design & Manufacturing
    • /
    • 제2권5호
    • /
    • pp.25-29
    • /
    • 2008
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalance have been observed. Filling imbalance could be decreased by modifying processing conditions such as injections rate, mold temperature, injection pressure, melt temperature that are related to shear, viscosity. In this study, a series of experiment was conducted to investigate filling imbalance variation when modifying runner layout and ploymer and to determine which processing condition influences as the primary cause of filling imbalance in geometrically balanced runner system. The filling imbalance was desreased up to result range of $3{\leq}DFI{\leq}8(%)$ by using a new runner system for balanced filling.

  • PDF

합성조건에 따른 Polyacrylamide 수화 겔의 흐름변성 성질 (Thixotropic Properties of Polyacrylamide Hydrogels with Various Synthetic Conditions)

  • 김남정
    • 대한화학회지
    • /
    • 제50권6호
    • /
    • pp.447-453
    • /
    • 2006
  • 수화 겔의 유변성질에 있어서 합성 조건과 수화 물 양의 영향이 연구되었다. cone-plate 레오메타를 사용하여 polyacrylamide 수화 겔의 비 뉴톤 유동 곡선을 얻었다. 이렇게 얻은 유동곡선에 유동에 대한 비뉴톤식을 적용하여 유변 파라메타를 계산하여 얻었다. polyacrylamide 수화 겔은 전단속도가 증가함에 따라 구조가 약해지는 흐름변성 현상을 나타낸다. 이들 유동성질은 유동단위의 특성과 유동 분절사이의 상호 관계에 의해서 나타나는 물질적인 성질이다.

균형충전을 위한 HR3P 금형 구조에서의 공정의 최적화 (Optimization of Processing on Filling Balance of the HR3P Mold Structure)

  • 권윤숙;정영득
    • 한국정밀공학회지
    • /
    • 제26권3호
    • /
    • pp.98-102
    • /
    • 2009
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalance has been observed. Filling imbalance could be decreased by modifying processing conditions such as injections rate, mold temperature, injection pressure, melt temperature that are related to shear, viscosity. In this study, a series of experiment was conducted to investigate filling imbalance variation when modifying runner layout and polymer and to determine which processing condition influences as the primary cause of filling imbalance in geometrically balanced runner system. The filling imbalance was decreased up to result range of $3{\leq}DFI{\leq}8(%)$ by using a new runner system for balanced filling.

Polyethylene flow prediction with a differential multi-mode Pom-Pom model

  • Rutgers, R.P.G.;Clemeur, N.;Debbaut, B.
    • Korea-Australia Rheology Journal
    • /
    • 제14권1호
    • /
    • pp.25-32
    • /
    • 2002
  • We report the first steps of a collaborative project between the University of Queensland, Polyflow, Michelin, SK Chemicals, and RMIT University, on simulation, validation and application of a recently introduced constitutive model designed to describe branched polymers. Whereas much progress has been made on predicting the complex flow behaviour of many - in particular linear - polymers, it sometimes appears difficult to predict simultaneously shear thinning and extensional strain hardening behaviour using traditional constitutive models. Recently a new viscoelastic model based on molecular topology, was proposed by McLeish and carson (1998). We explore the predictive power of a differential multi-mode version of the porn-pom model for the flow behaviour of two commercial polymer melts: a (long-chain branched) low-density polyethylene (LDPE) and a (linear) high-density polyethylene (HDPE). The model responses are compared to elongational recovery experiments published by Langouche and Debbaut (19c99), and start-up of simple shear flow, stress relaxation after simple and reverse step strain experiments carried out in our laboratory.

수직관 내 순수 증기의 층류 액막 응축 모델 (Laminar Film Condensation Model of Pure Steam in a Vertical Tube)

  • 김동억
    • 한국유체기계학회 논문집
    • /
    • 제17권3호
    • /
    • pp.33-40
    • /
    • 2014
  • In this study, a new model for calculating the liquid film thickness and condensation heat transfer coefficient in a vertical condenser tube is proposed by considering the effects of gravity, liquid viscosity, and vapor flow in the core region of the flow. In order to introduce the radial velocity profile in the liquid film, the liquid film flow was regarded to be in Couette flow dragged by the interfacial velocity at the liquid-vapor interface. For the calculation of the interfacial velocity, an empirical power-law velocity profile had been introduced. The resulting liquid film thickness and heat transfer coefficient obtained from the proposed model were compared with the experimental data from other experimental study and the results obtained from the other condensation models. In conclusion, the proposed model physically explained the liquid film thinning effect by the vapor shear flow and predicted the condensation heat transfer coefficient from experiments reasonably well.

진동장에서의 비뉴턴유체 유동의 특성 (Characteristic of the non-Newtonian fluid flows with vibration)

  • 최성호;신세현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2048-2053
    • /
    • 2003
  • The present study investigated the effect of the transversal vibration on the flow characteristics for non-Newtonian fluids. The effect was tested by experiment and numerical analysis. For Newtonian fluids, both of experiment and numerical analysis results showed that mechanical vibration did not affect the flow rate. For non-Newtonian fluids, however, there was significant disagreement between experiment and numerical results. The numerical results showed a negligibly small effect of vibration on the flow rate whereas experimental results showed a significant flow rate increase associated with transversal vibration. The results implied that the increased flow rate was caused not only by imposed shear rates at the wall but also by the changes of rheological characteristics due to the transversal vibration.

  • PDF

사출성형시 불균형 충전에 관한 다구찌 실험계획법을 이용한 성형공정의 최적화 (On the new mold structure with multi-point gate for filling-balance mold)

  • 권윤숙;한동엽;정영득
    • Design & Manufacturing
    • /
    • 제1권1호
    • /
    • pp.13-16
    • /
    • 2007
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalance have been observed. Filling imbalance could be decreased by modifying processing conditions such as injections rate, mold temperature, injection pressure, melt temperature that are related to shear, viscosity. In this study, a series of experiment was conducted to investigate filling imbalance variation when modifying runner layout and polymer and to determine which processing condition influences as the primary cause of filling imbalance in geometrically balanced runner system.

  • PDF

사출성형에서 제품 형상에 따른 PP수지의 수축거동 (Shrinkage Behaviors of Polypropylene according to Product Form in Injection Molding)

  • 최윤식;한동엽;정영득
    • 한국기계가공학회지
    • /
    • 제3권3호
    • /
    • pp.46-51
    • /
    • 2004
  • Nowadays, plastic industry has needed to produce parts that require high precision and quality. To make a high precision and quality part, before injection molding, plastic material in investigated about their properties such as shrinkage, warpage, etc. In this study, experiments were conducted with PP(polypiopylene) to figure out shrinkage behavior according to three type aspect ratio of samples. The injection speed that affects on shear late, molecular orientation within plastic part was determined as main variable of experiment. As a result of experimental study, part shrinkage had a tendency to be decreased by increasing injection speed and aspect ratio of samples.

  • PDF

Preparation of Cellulose Nanofibril/Regenerated Silk Fibroin Composite Fibers

  • Lee, Ji Hye;Bae, Chang Hyun;Park, Byung-Dae;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제26권2호
    • /
    • pp.81-88
    • /
    • 2013
  • Wet-spun silk fibers have attracted the attention of many researchers because of 1) the unique properties of silk as a biomaterial, including good biocompatibility and cyto-compatability and 2) the various methods available to control the structure and properties of the fiber. Cellulose nanofibrils (CNFs) have typically been used as a reinforcing material for natural and synthetic polymers. In this study, CNF-embedded silk fibroin (SF) nanocomposite fibers were prepared for the first time. The effects of CNF content on the rheology of the dope solution and the characteristics of wet-spun CNF/SF composite fibers were also examined. A 5% SF formic acid solution that contained no CNFs showed nearly Newtonian fluid behavior, with slight shear thinning. However, after the addition of 1% CNFs, the viscosity of the dope solution increased significantly, and apparent shear thinning was observed. The maximum draw ratio of the CNF/SF composite fibers decreased as the CNF content increased. Interestingly, the crystallinity index for the silk in the CNF/SF fibers was sequentially reduced as the CNF content was increased. This phenomenon may be due to the fact that the CNFs prevent ${\beta}$-sheet crystallization of the SF by elimination of formic acid from the dope solution during the coagulation process. The CNF/SF composite fibers displayed a relatively smooth surface with stripes, at low magnification (${\times}500$). However, a rugged nanoscale surface was observed at high magnification (${\times}10,000$), and the surface roughness increased with the CNF content.

나일론66/MWCNT 복합체 물성 및 유변학적 특성 연구 (Study on the Physical and Rheological Properties of Nylon66/MWCNT Composites)

  • 김도의;김연철
    • 공업화학
    • /
    • 제24권2호
    • /
    • pp.214-218
    • /
    • 2013
  • 나일론66에 다중벽 탄소나노튜브(multi-walled carbon nano tube, MWCNT)를 1, 3, 5, 7 wt% 첨가하여 이축압출기(twin screw extruder)를 이용하여 나일론66/MWCNT 복합체를 제조하였다. MWCNT의 함량에 따른 열적특성, 분산성, 유변 학적 특성 및 충격특성을 DSC, TGA, X선 회절 분석기(XRD), 전자주사현미경(SEM), 동적유변측정기(ARES) 그리고 Izod 시험기를 이용하여 분석하였다. 나일론66에 MWCNT를 첨가할 때 나일론66의 비등온결정화에 영향을 주는 것을 DSC를 이용하여 확인하였다. 나일론66/MWCNT 복합체의 경우 낮은 전단속도 영역에서 복합점도 및 복합점도에 대 한 주파수 의존성을 나타내는 전단박하(shear thinning)가 증가하였으며, MWCNT 함량이 증가할수록 증가폭이 크게 나타났다. 또한 복합체의 G'-G" plot의 기울기가 감소하는 현상으로부터 탄성특성 증가를 확인하였다. 기계적 물성으 로 Izod 충격강도를 분석하였고, 3 wt% MWCNT가 첨가될 때 60%의 충격강도 개선을 확인하였다. SEM을 이용하여 나일론66내의 MWCNT의 분산성을 확인하였다.