• 제목/요약/키워드: Shear span to depth ratio

검색결과 224건 처리시간 0.033초

Assessment of geometric nonlinear behavior in composite beams with partial shear interaction

  • Jie Wen;Abdul Hamid Sheikh;Md. Alhaz Uddin;A.B.M. Saiful Islam;Md. Arifuzzaman
    • Steel and Composite Structures
    • /
    • 제48권6호
    • /
    • pp.693-708
    • /
    • 2023
  • Composite beams, two materials joined together, have become more common in structural engineering over the past few decades because they have better mechanical and structural properties. The shear connectors between their layers exhibit some deformability with finite stiffness, resulting in interfacial shear slip, a phenomenon known as partial shear interaction. Such a partial shear interaction contributes significantly to the composite beams. To provide precise predictions of the geometric nonlinear behavior shown by two-layered composite beams with interfacial shear slips, a robust analytical model has been developed that incorporates the influence of significant displacements. The application of a higher-order beam theory to the two material layers results in a third-order adjustment of the longitudinal displacement within each layer along the depth of the beam. Deformable shear connectors are employed at the interface to represent the partial shear interaction by means of a sequence of shear connectors that are evenly distributed throughout the beam's length. The Von-Karman theory of large deflection incorporates geometric nonlinearity into the governing equations, which are then solved analytically using the Navier solution technique. Suggested model exhibits a notable level of agreement with published findings, and numerical outputs derived from finite element (FE) model. Large displacement substantially reduces deflection, interfacial shear slip, and stress values. Geometric nonlinearity has a significant impact on beams with larger span-to-depth ratio and a greater degree of shear connector deformability. Potentially, the analytical model can accurately predict the geometric nonlinear responses of composite beams. The model has a high degree of generality, which might aid in the numerical solution of composite beams with varying configurations and shear criteria.

Nonlinear behavior of deep reinforced concrete coupling beams

  • Zhao, Z.Z.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • 제15권2호
    • /
    • pp.181-198
    • /
    • 2003
  • Six large scale models of conventionally reinforced concrete coupling beams with span/depth ratios ranging from 1.17 to 2.00 were tested under monotonically applied shear loads to study their nonlinear behavior using a newly developed test method that maintained equal rotations at the two ends of the coupling beam specimen and allowed for local deformations at the beam-wall joints. By conducting the tests under displacement control, the post-peak behavior and complete load-deflection curves of the coupling beams were obtained for investigation. It was found that after the appearance of flexural and shear cracks, a deep coupling beam would gradually transform itself from an ordinary beam to a truss composed of diagonal concrete struts and longitudinal and transverse steel reinforcement bars. Moreover, in a deep coupling beam, the local deformations at the beam-wall joints could contribute significantly (up to the order of 50%) to the total deflection of the coupling beam, especially at the post-peak stage. Finally, although a coupling beam failing in shear would have a relatively low ductility ratio of only 5 or even lower, a coupling beam failing in flexure could have a relatively high ductility ratio of 10 or higher.

균열모델을 사용한 철근콘크리트 구조물의 비선형거동 해석에 관한 연구 (A Study on Nonlinear Behavior of RC Structure using Different Crack Models)

  • 김성칠;안영기;박성용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권4호
    • /
    • pp.139-146
    • /
    • 2002
  • A analysis of crack behavior in RC member was performed by nonlinear finite element method. Two crack models were used in F.E.M.(finite element method): one was FCM (the fixed crack model) and the other was RCM (the rotated crack model). Based on parametric study, the ratio of shear steel, strength of concrete, and a/d(shear span/effective depth) were compared with test results of references. According to the test results, when the member behavior was affected by the shear or diagonal tension, RCM was reasonable. However, when the behavior was affected by the flexibility, FCM was more appropriate. In addition, each crack model behavior for the change of shear steel ratio, the increase of strain energy was constant in FCM, but it was different in RCM because of diagonal crack distribution and crack width. Since the strength of concrete is affected not only by shear but also by flexural strength, each crack model behavior yields similar results.

폴리머-강섬유를 혼입한 고강도 콘크리트보의 전단거동에 관한 실험적 연구 (An Experimental Study on Shear Behavior of Polymer-Steel Fibrous High Strength Concrete Beams)

  • 곽계환;조선정;김원태;조한용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.601-608
    • /
    • 2000
  • Steel fiber and Polymer are used widely for the reinforcement material of RC structures because of its excellence of durability, serviceability as well as mechanical properties. Polymer-Steel fibrous high strength concrete beam's input ratio are 1.0%. The shear span-to-depth ratio are 1.5, 2.8 and 3.6, compressive strength of specimens 320kg/㎠, 436kgf/㎠ and 520kgf/㎠ in 28 days. The static test was carried out to measure the ultimate load, the initial load of flexural crack and of diagonal crack, from which crack patte군 and fracture modes are earned. Also, stress-strain, load-strain and load-deflection are examined during the test cracks(shear crack, flexural crack, and diagonal tension crack), when the load values are sketched according to the growth of crack. Result are as follows; (1) The failure modes of the specimens increase in rigidity and durability in accordance with the increase of mixing steel fiber and polymer. (2) The load of initial crack was the same as the theory of shear-crack strength (3) Polymer-Steel fibrous high strength concrete beams have increased the deflection and strain at failure load, improving the brittleness of the high strength concrete. (4) In this result of study, an additional study need to make a need formular because the study is different from ACI formular and Zsutty formular.

  • PDF

변환각 트러스 모델에 의한 축력을 받는 철근콘크리트 부재의 전단강도 예측 (Shear Strength Prediction of Reinforced Concrete Members Subjected In Axial force using Transformation Angle Truss Model)

  • 김상우;이정윤
    • 콘크리트학회논문집
    • /
    • 제16권6호
    • /
    • pp.813-822
    • /
    • 2004
  • 축하중을 받는 철근콘크리트 부재의 전단강도를 예측하기 위하여, 본 연구에서는 전단력과 축하중 및 휨모멘트를 받는 철근 콘크리트 부재의 전단거동을 예측할 수 있는 변환각 트러스 모델(TATM)을 제안하였다. TATM에서, 축력의 영향을 고려하기 위하여 축압축력이 증가할수록 고정각은 감소하며 균열 방향의 콘크리트 전단저항은 증가한다. TATM의 예측결과가 축력을 받는 철근콘크리트 부재에 대하여 정확성과 신뢰성을 가지는지 검증하기 위하여, 축력을 받는 총 67개의 전단실험 결과를 수집하였으며, TATM 및 기존의 트러스 모델(MCFT, RA-STM FA-STM)과 비교하였다. 수집한 실험결과와 해석결과를 비교한 결과, TATM에 의한 해석결과는 실험결과를 평균 0.95, 변동계수 $12.0\%$로 기존의 트러스 모델보다 더 정확히 예측하였으며, 철근능력비, 축력, 전단경간비 및 압축철근비의 영향을 받지 않았다.

전단 보강이 없는 강섬유보강 고강도 철근 콘크리트보의 전단 거동에 관한 연구 (Shear Mechanism of Steel-Fiber Reinforced High Strength Concrete Beams without Sheat Confinement)

  • 오정근;이광수;신성우
    • 콘크리트학회지
    • /
    • 제3권3호
    • /
    • pp.141-148
    • /
    • 1991
  • 본 논문은 전단보강이 없는 강섬유보강 고강도 철근콘크리트보의 전단거동에 관한 연구로서 전단스팬비(a/b), 섬유첨가율(Vf)의 변화에 사인장균열 전단응력 및 극한전단응력의 변화를 관찰하였다. 실험결과 섬유첨가율이 증가할수록, 전단스팬비가 감소할수록 사인장균열 전단응력 및 극한전단응력이 증가함을 보여주고 있으며, 특히 섬유첨가율이 증가함에 따라 섬유의 균열억제거동에 의해 극한전단응력이 높게 증가함을 볼 수 있다. 본 연구에 의한 실험결과를 바탕으로 각 변수에 따른 사인장균열 전단응력 및 극한전단응력에 대한 실험식을 제안하였다.

Shear lag effect of varied sectional cantilever box girder with multiple cells

  • Guo, Zengwei;Liu, Xinliang;Li, Longjing
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.295-310
    • /
    • 2022
  • This paper proposes a modified bar simulation method for analyzing the shear lag effect of variable sectional box girder with multiple cells. This theoretical method formulates the equivalent area of stiffening bars and the allocation proportion of shear flows in webs, and re-derives the governing differential equations of bar simulation method. The feasibility of the proposed method is verified by the model test and finite element (FE) analysis of a simply supported multi-cell box girder with constant depth. Subsequently, parametric analysis is conducted to explore the mechanism of shear lag effect of varied sectional cantilever box girder with multiple cells. Results show that the shear lag behavior of variable box-section cantilever box girder is weaker than that of box girder with constant section. It is recommended to make the gradient of shear flow in the web with respect to span length vary as smoothly as possible for eliminating the shear lag effect of box girder. An effective countermeasure for diminishing shear lag effect is to increase the number of box chambers or change the variation manner of bridge depth. The shear lag effect of varied sectional cantilever box girder will get more server when the length of central flanges is shorter than 0.26 or longer than 0.36 times of total width of top flange, as well as the cantilever length exceeds 0.29 times of total length of box's flange. Therefore, the distance between central webs can adjust the shear lag effect of box girder. Especially, the width ratio of cantilever plate with respect to total length of top flange is proposed to be no more 1/3.

철근콘크리트 보의 휨압축강도 및 변형률에 대한 크기효과 (Size Effect on Flexural Stress-Strain Relationship of Reinforced-Concrete Beams)

  • 김민수;김진근;김장호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.911-916
    • /
    • 2002
  • It is important to consider the effect of depth when estimating the ultimate strength of a concrete flexural member because the strength always decreases with an increase of member size. In this study, the size effect of reinforced concrete beam was experimentally investigated. For this purpose, a series of beam specimens subjected to 2-point bending load were tested. More specifically, three different depth (d=15, 30, and 60 cm) of reinforced concrete beams were tested to investigate the size effect. The shear-span to depth ratio (a/d=3) and thickness (20 cm) of the specimens were kept constant where the size effect in out-of-plan direction is not considered. The test results are fitted using least square method (LSM) to obtain parameters for modified size effect law (MSEL). The analysis results indicate that the flexural compression strength and ultimate strain decreases as the specimen size increases. Finally, more general parameters for MSEL are suggested.

  • PDF

자중저감 철선일체형 중공 데크플레이트 슬래브의 휨 및 전단내력에 대한 구조성능평가 (Structural Performance Evaluation on Flexural and Shear Capacity for Weight Reducing Steel Wire-Integrated Void Deck Plate Slab)

  • 김상섭;유덕수;부윤섭
    • 한국강구조학회 논문집
    • /
    • 제24권4호
    • /
    • pp.411-422
    • /
    • 2012
  • 본 연구의 목적은 기존의 철선일체형 데크플레이트에 오메가형 강판을 삽입한 중공 데크플레이트 슬래브의 휨 및 전단내력의 구조성능을 평가하는 것이다. 휨 및 전단내력에 대한 구조성능을 평가하기 위해서 슬래브 두께를 주요 변수로 하여 150mm 실험체 5개와 200mm 실험체 3개를 제작하였다. 각 실험체는 기존의 철선일체형 데크플레이트 슬래브 1개씩과 콘크리트 토핑두께를 변수로 하는 2개씩의 실험체로 구성되어 있다. 실험결과 중공부에 형성에 의한 휨 및 전단내력에 대한 구조성능의 저하는 없는 것으로 나타났다. 따라서 중공 데크플레이트는 효과적으로 콘크리트 사용량을 저감하면서도 기존의 철선일체형 데크플레이트에 준하는 구조성능을 갖춘 것으로 판단된다.

Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides

  • Al-Osta, Mohammed A.
    • Computers and Concrete
    • /
    • 제24권1호
    • /
    • pp.37-49
    • /
    • 2019
  • In this study, the shear behaviour of reinforced concrete (RC) beams that were retrofitted using precast panels of ultra-high performance fiber reinforced concrete (UHPFRC) is presented. The precast UHPFRC panels were glued to the side surfaces of RC beams using epoxy adhesive in two different configurations: (i) retrofitting two sides, and (ii) retrofitting three sides. Experimental tests on the adhesive bond were conducted to estimate the bond capacity between the UHPFRC and normal concrete. All the specimens were tested in shear under varying levels of shear span-to-depth ratio (a/d=1.0; 1.5). For both types of configuration, the retrofitted specimens exhibited a significant improvement in terms of stiffness, load carrying capacity and failure mode. In addition, the UHPFRC retrofitting panels glued in three-sides shifted the failure from brittle shear to a more ductile flexural failure with enhancing the shear capacity up to 70%. This was more noticeable in beams that were tested with a/d=1.5. An approach for the approximation of the failure capacity of the retrofitted RC beams was evolved using a multi-level regression of the data obtained from the experimental work. The predicted values of strength have been validated by comparing them with the available test data. In addition, a 3-D finite element model (FEM) was developed to estimate the failure load and overall behaviour of the retrofitted beams. The FEM of the retrofitted beams was conducted using the non-linear finite element software ABAQUS.