• Title/Summary/Keyword: Shear modulus

Search Result 951, Processing Time 0.03 seconds

Effective Longitudinal Shear Modulus of Polymeric Composite Using Iosipescu Shear Test (Iosipescu Shear Test를 이용한 고분자 복합재료의 종방향 전단계수 연구)

  • Jeong, Tae-Heon;Kwon, Yong-Su;Lee, You-Tae;Lee, Dong-Joo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.61-67
    • /
    • 2000
  • Effective shear modulus of continuous fiber reinforced polymeric composites is measured using a modified Iosipescu Shear Test(IST) and compared with data obtained by finite element analyses that a concept of unit cell is. It is found that the numerical results of the longitudinal shear modulus give a good agreement with experimental data at lower fiber volume fraction. In this paper, both the distance and stress transfer between the fibers are discussed as the major factors.

  • PDF

Dynamic Deformation Characteristics of Fiber Mixed Silty Sand (섬유보강 실트질 모래의 동적 변형특성)

  • Heo, Joon;Chang, Pyoung-Wuck
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.59-70
    • /
    • 2005
  • A series of resonant column test was performed to investigate the dynamic deformation characteristics of silty sand soils mixed with polypropylene fibrillated type fiber. Results show that optimum mixing ratios were $0.2\%$ for 19mm of cut fiber for shear modulus and $0.1\%$ for 60mm cut fiber fur damping ratio. As shear strain was increased, normalized values of shear modulus (G(Reinforced)/ G(Unreinforced)) of fiber reinforced soil were increased up to $10^{-3}\%\~10^{-1}\%$ ranges. However, normalized damping ratio (D(Reinforced/D(Unreinforced)) was diminished with an increase in strain beyond $10^{-3}\%\~10^{-1}\%$ for the damping capacity of soils mixed with fiber. Normalized shear modulus $(G/G_{max})$ obtained from the test was plotted in the chart suggested by Seed and Idriss. The shear modulus of silty sand was located between sand and gravel curves.

Effective Longitudinal Shear Modulus of Continuous Fiber-Reinforced 2-Phase Composites (연속섬유가 보강된 2상 복합재료의 종방향 전단계수 해석)

  • Lee, Dong-Ju;Jeong, Tae-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2770-2781
    • /
    • 1996
  • Longitudinal shear modulus of continuous fiber reinforced 2-phase composites is predicted by theoretical and numerical analysis methods. In this paper, circular, hexagonal and rectangular shapes of reinforced fiber are considered using unit cell concept. And fiber array is regular rectangular and hexagonal fiber arrangement. Longitudinal shear modulus is a function of fiber distribution pattern and fiber volume change. It is found that the rectangular array has a higher longitudinal shear modulus than the hexagonal one. Also, the rectangular fiber shape in lower fiber volume fraction and the circular fiber shape in higher fiber volume fraction show the higher longitudinal shear modulus. And it has been found that the theoretical and numerical predictions of the longitudinal shear modulus give a good agreement with the experimental data at lower fiber volume fraction. Both the distance and stress transfer between the fibers are discussed as the major determing factors.

A Experimental Study on Application of KS F 2456 using Shear Wave (급속 동결 융해에 대한 콘크리트의 저항 시험방법(KS F 2456)에 전단파 적용을 위한 실험적 연구)

  • An, Ji-Hwan;Jeon, Sung-Il;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.57-65
    • /
    • 2012
  • PURPOSES: It is important to consider the long-term performance of concrete pavement, because concrete pavement is more exposed to the various environmental conditions than any other concrete structures. One of the several methods to evaluate the long-term performance of concrete during winter is KS F 2456. Relative dynamic modulus of elasticity shows the resistance to freezing and thawing. METHODS: To measure relative dynamic modulus of elasticity, ultra sonic is generally used. But in this study, to measure the relative dynamic modulus of elasticity, both ultra sonic and shear wave were used and then compared each other. RESULTS: The results from the measurement by ultrasonic wave and shear wave were divided into three types. Type 1 : Specimens are good and relative dynamic modulus of elasticity did not decrease until 300 cycle. Type 2 : The relative dynamic modulus of elasticity decreased from the late cycle.(about 150 cycle later) Type 3 : The relative dynamic modulus of elasticity consistently decreased from the beginning. As a result of ANOVA, there is no difference according to measuring method, in type 2 and 3. But there is a difference according to measuring method, in type 1's relative dynamic modulus of elasticity. CONCLUSIONS: It is proved that shear wave can be used to understand the damage tendency of relative freezing and thawing and to measure the relative dynamic modulus of elasticity.

Rheological Properties of Antiphlamine-S® Lotion (안티푸라민-에스® 로션의 레올로지 특성 연구)

  • Kuk, Hoa-Youn;Song, Ki-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.185-199
    • /
    • 2009
  • Using a strain-controlled rheometer [Advanced Rheometric Expansion System (ARES)], the steady shear flow properties and the dynamic viscoelastic properties of $Antiphlamine-S^{(R)}$ lotion have been measured at $20^{\circ}C$ (storage temperature) and $37^{\circ}C$ (body temperature). In this article, the temperature dependence of the linear viscoelastic behavior was firstly reported from the experimental data obtained from a temperature-sweep test. The steady shear flow behavior was secondly reported and then the effect of shear rate on this behavior was discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters. The angular frequency dependence of the linear viscoelastic behavior was nextly explained and quantitatively predicted using a fractional derivative model. Finally, the strain amplitude dependence of the dynamic viscoelastic behavior was discussed in full to elucidate a nonlinear rheological behavior in large amplitude oscillatory shear flow fields. Main findings obtained from this study can be summarized as follows : (1) The linear viscoelastic behavior is almostly independent of temperature over a temperature range of $15{\sim}40^{circ}C$. (2) The steady shear viscosity is sharply decreased as an increase in shear rate, demonstrating a pronounced Non-Newtonian shear-thinning flow behavior. (3) The shear stress tends to approach a limiting constant value as a decrease in shear rate, exhibiting an existence of a yield stress. (4) The Herschel-Bulkley, Mizrahi-Berk and Heinz-Casson models are all applicable and have an equivalent validity to quantitatively describe the steady shear flow behavior of $Antiphlamine-S^{(R)}$ lotion whereas both the Bingham and Casson models do not give a good applicability. (5) In small amplitude oscillatory shear flow fields, the storage modulus is always greater than the loss modulus over an entire range of angular frequencies tested and both moduli show a slight dependence on angular frequency. This means that the linear viscoelastic behavior of $Antiphlamine-S^{(R)}$ lotion is dominated by an elastic nature rather than a viscous feature and that a gel-like structure is present in this system. (6) In large amplitude oscillatory shear flow fields, the storage modulus shows a nonlinear strain-thinning behavior at strain amplitude range larger than 10 % while the loss modulus exhibits a weak strain-overshoot behavior up to a strain amplitude of 50 % beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (7) At sufficiently large strain amplitude range (${\gamma}_0$>100 %), the loss modulus is found to be greater than the storage modulus, indicating that a viscous property becomes superior to an elastic character in large shear deformations.

Equivalent Shear Modulus of Egg-Box Core (에그-박스 코어의 등가 전단 탄성계수)

  • Lee, Sang-Youn;Yun, Su-Jin;Park, Dong-Chang;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.938-941
    • /
    • 2011
  • This paper deals with the equivalent shear modulus of the egg-box core. There are three approaches to obtain the equivalent shear modulus of core: a finite element analysis, an analytical study, and an empirical method. In this study, an 3-point bending test is used to evaluate the equivalent shear modulus of the Egg-Box core. As a result of the present work, the equivalent shear modulus of egg-box core at room temperature can be obtained. And this result is compared with the result of finite element analysis.

  • PDF

An experimental investigation on dynamic properties of various grouted sands

  • Hsiao, Darn-Horng;Phan, Vu To-Anh;Huang, Chi-Chang
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.77-94
    • /
    • 2016
  • Cyclic triaxial and resonant column tests were conducted to understand the beneficial effects of various grouted sands on liquefaction resistance and dynamic properties. The test procedures were performed on a variety of grouted sands, such as silicate-grouted sand, silicate-cement grouted sand and cement-grouted sand. For each type of grout, sand specimen was mixed with a 3.5% and 5% grout by volume. The specimens were tested at a curing age of 3, 7, 28 and 91 days, and the results of the cyclic stress ratio, the maximum shear modulus and the damping ratio were obtained during the testing program. The influence of important parameters, including the type of grout, grout content, shear strain, confining pressure, and curing age, were investigated. Results indicated that sodium silicate grout does not improve the liquefaction resistance and shear modulus; however, silicate-cement and cement grout remarkably increased the liquefaction resistance and shear modulus. Shear modulus decreased and damping ratio increased with an increase in the amplitude of shear strain. The effect of confining pressure on clean sand and sodium silicate grouted sand was found to be insignificant. Furthermore, a nonlinear regression analysis was used to prove the agreement of the shear modulus-shear strain relation presented by the hyperbolic law for different grouted sands, and the coefficients of determination, $R^2$, were nearly greater than 0.984.

Evaluation of Dynamic Properties of Trackbed Foundation Soil Using Mid-size Resonant Column Test

  • Lim, Yujin;Nguyen, Tien Hue;Lee, Seong Hyeok;Lee, Jin-Wook
    • International Journal of Railway
    • /
    • v.6 no.3
    • /
    • pp.112-119
    • /
    • 2013
  • A mid-size RC test apparatus (MRCA) equipped with a program is developed that can test samples up to D=10 cm diameter and H=20 cm height which are larger than usual samples used in practice. Using the developed RC test apparatus, two types of crushed trackbed foundation materials were tested in order to get the shear modulus reduction curves of the materials with changing of shear strain levels. For comparison purpose, large repetitive triaxial compression tests (LRT) with samples of height H=60cm and diameter D=30 cm were performed also. Resilient modulus obtained from the LRT was converted to shear modulus by considering elastic theory and strain level conversion and were compared to shear modulus values from the MRCA. It is found from this study that the MRCA can be used to test the trackbed foundation materials properly. It is found also that strain levels of $E_{v2}$ mostly used in the field should be verified considering the shear modulus reduction curves and proper values of $E_{v2}$ of trackbed foundation must be used considering the strain level verified.

The Rubber Characteristic Test for Solid Motor Flexible Seal (고체 모터 플렉시블 씰을 위한 고무 특성 시험)

  • Kim, Byung-Hun;Kwon, Tae-Hoon;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.217-220
    • /
    • 2008
  • The most important properties in the rubber for a flexible seal are the shear modulus, shear stress, reproducibility of rubber properties from lot to lot and shear modulus variation as aging. This study was conducted to confirm a rubber characteristic for the flexible seal. As a test result, the shear modulus is the range of 0.4310 ${\sim}$ 0.4997MPa, and failure shear stress is above 2.5MPa. After 1 year, the shear modulus of rubber as aging increased about 11.8%.

  • PDF

Age-related change in shear elastic modulus of the thoracolumbar multifidus muscle in healthy Beagle dogs using ultrasound shear wave elastography

  • Tokunaga, Akari;Shimizu, Miki
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.3.1-3.13
    • /
    • 2021
  • Background: Multifidus muscle stiffness decreases in patients with lumbar intervertebral disk herniation; however, age-related changes in humans have not been reported. Objectives: The reliability of ultrasound shear wave elastography in dogs, and changes in the shear elastic modulus of the thoracolumbar multifidus muscle with aging in dogs, were investigated. Methods: Twelve beagle dogs were divided into 2 groups based on the age of onset of intervertebral disk herniation: young (aged not exceeding 2 years; 1.3 ± 0.6 years old, n = 5) and adult (4.9 ± 1.2 years old, n = 7). The shear elastic modulus of the multifidus muscle, from the thirteenth thoracic spine to the fourth lumbar spine, was measured using ultrasound shear wave elastography. The length, cross-sectional area and muscle to fat ratio of the multifidus muscle, and the grade of intervertebral disk degeneration, were assessed using radiographic and magnetic resonance imaging examinations. Results: The length and cross-sectional area of the multifidus muscle increased caudally. In the young group, the shear elastic modulus of the multifidus muscle of the thirteenth thoracic spine was less than that of the third lumbar spine. In the adult group, the shear elastic modulus of the multifidus muscle of first and third lumbar spine was lower than that of the same site in the young group. Conclusions: Ultrasound can be used to measure shear wave elastography of the thoracolumbar multifidus in dogs. If the multifidus muscle stiffness decreases, we should consider age-related change.