• Title/Summary/Keyword: Shear load

검색결과 2,630건 처리시간 0.028초

Strengthening of steel-concrete composite beams with composite slab

  • Subhani, Mahbube;Kabir, Muhammad Ikramul;Al-Amer, Riyadh
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.91-105
    • /
    • 2020
  • Steel-concrete composite beam with profiled steel sheet has gained its popularity in the last two decades. Due to the ageing of these structures, retrofitting in terms of flexural strength is necessary to ensure that the aged structures can carry the increased traffic load throughout their design life. The steel ribs, which presented in the profiled steel deck, limit the use of shear connectors. This leads to a poor degree of composite action between the concrete slab and steel beam compared to the solid slab situation. As a result, the shear connectors that connects the slab and beam will be subjected to higher shear stress which may also require strengthening to increase the load carrying capacity of an existing composite structure. While most of the available studies focus on the strengthening of longitudinal shear and flexural strength separately, the present work investigates the effect of both flexural and longitudinal shear strengthening of steel-concrete composite beam with composite slab in terms of failure modes, ultimate load carrying capacity, ductility, end-slip, strain profile and interface differential strain. The flexural strengthening was conducted using carbon fibre reinforced polymer (CFRP) or steel plate on the soffit of the steel I-beam, while longitudinal shear capacity was enhanced using post-installed high strength bolts. Moreover, a combination of both the longitudinal shear and flexural strengthening techniques was also implemented (hybrid strengthening). It is concluded that hybrid strengthening improved the ultimate load carrying capacity and reduce slip and interface differential strain that lead to improved composite action. However, hybrid strengthening resulted in brittle failure mode that decreased ductility of the beam.

Behaviour of a plane joint under horizontal cyclic shear loading

  • Dang, Wengang;Fruhwirt, Thomas;Konietzky, Heinz
    • Geomechanics and Engineering
    • /
    • 제13권5호
    • /
    • pp.809-823
    • /
    • 2017
  • This paper describes lab test results of artificial rock-like material samples having a plane joint. Cyclic shear tests were performed under different normal loads and different shear displacement amplitudes. For this purpose, multi-stage normal loading tests (30 kN, 60 kN, 90 kN, 180 kN, 360 kN and 480 kN) with cyclic excitation at frequency of 1.0 Hz and different shear displacement amplitudes (0.5 mm, 1.0 mm, 2.0 mm, 4.0 mm, 5.0 mm, and 8.0 mm) were conducted using the big shear box device GS-1000. Experimental results show, that shear forces increase with the increase of normal forces and quasi-static friction coefficient is larger than dynamic one. With the increase of normal loads, approaching the peak value of shear forces needs larger shear displacements. During each cycle the normal displacements increase and decrease (rotational behavior in every cycle). Peak angle of inclination increases with the increase of normal load. A phase shift between maximum shear displacement and maximum shear force is observed. The corresponding time shift decreases with increasing normal load and increases with increasing shear displacement amplitudes.

Investigation of rotation and shear behaviours of complex steel spherical hinged bearings subject to axial tensile load

  • Shi, Kairong;Pan, Wenzhi;Jiang, Zhengrong;Lv, Junfeng
    • Structural Engineering and Mechanics
    • /
    • 제73권2호
    • /
    • pp.123-132
    • /
    • 2020
  • Steel spherical hinged bearings have high loading capacity, reliable load transfer, flexible rotation with universal hinge and allowance of large displacement and rotation angle. However, bearings are in complex forced states subject to various load combinations, which lead to the significant influence on integral structural safety. Taking the large-tonnage complex steel spherical hinged bearings of Terminal 2 of Guangzhou Baiyun International Airport as an example, full-scale rotation and shear behaviour tests of the bearings subject to axial tensile load are carried out, and the corresponding finite element simulation analyses are conducted. The results of experiments and finite element simulations are in good agreement with the coincident development tendency of stress and deformation. In addition, the measured rotational moment is less than the calculated moment prescriptive by the code, and the relationship between horizontal displacement and horizontal shear force is linear. Finally, based on these results, the rotation and shear stiffness models of bearings subject to axial tensile load are proposed for the refinement analysis of integral structure.

전단벽의 전단성능 예측 모형 (Theoretical Models for Predicting Racking Resistance of Shear Walls)

  • 장상식
    • Journal of the Korean Wood Science and Technology
    • /
    • 제30권4호
    • /
    • pp.96-105
    • /
    • 2002
  • 전단벽은 현대식 경골목조건축에서 바람이나 지진 등에 의한 측방하중에 대한 저항력을 제공하는 가장 중요한 요소 중의 하나이다. 전단벽에서 건물에 전달된 측방하중은 벽의 스터드와 덮개재료 사이의 못접합부를 통하여 덮개재료로 전달되고 덮개재료에 전달된 하중은 판재의 면전단력에 의하여 지지된다. 따라서 실제 전단벽에서 측방하중에 대한 저항력을 결정하는 가장 중요한 요소는 못접합부라고 할 수 있을 것이다. 이 연구에서는 스터드와 판재 사이의 못접합부에 대한 강성 및 강도를 측정하였으며 이 값들은 전단벽의 찌그러짐 저항력을 예측하는 이론모형의 입력자료로 사용되었다. 이론모형의 예측치의 정확성을 검증하기 위하여 판재 한 장으로 구성된 전단벽의 전단시험을 수행하였다. 못접합부의 강성은 스터드 부재의 섬유방향에 의하여 영향을 받았으나 판재의 방향은 거의 영향을 미치지 않는 것으로 나타났다. 전단하중 하에서 못접합부나 전단벽의 거동은 3개의 직선구간으로 나나낼 수 있었으며 이론모형 I보다 이론모형 II의 예측치가 더 정확하였다.

Shear strength prediction of concrete-encased steel beams based on compatible truss-arch model

  • Xue, Yicong;Shang, Chongxin;Yang, Yong;Yu, Yunlong;Wang, Zhanjie
    • Steel and Composite Structures
    • /
    • 제43권6호
    • /
    • pp.785-796
    • /
    • 2022
  • Concrete-encased steel (CES) beam, in which structural steel is encased in a reinforced concrete (RC) section, is widely applied in high-rise buildings as transfer beams due to its high load-carrying capacity, great stiffness, and good durability. However, these CES beams are prone to shear failure because of the low shear span-to-depth ratio and the heavy load. Due to the high load-carrying capacity and the brittle failure process of the shear failure, the accurate strength prediction of CES beams significantly influences the assessment of structural safety. In current design codes, design formulas for predicting the shear strength of CES beams are based on the so-called "superposition method". This method indicates that the shear strength of CES beams can be obtained by superposing the shear strengths of the RC part and the steel shape. Nevertheless, in some cases, this method yields errors on the unsafe side because the shear strengths of these two parts cannot be achieved simultaneously. This paper clarifies the conditions at which the superposition method does not hold true, and the shear strength of CES beams is investigated using a compatible truss-arch model. Considering the deformation compatibility between the steel shape and the RC part, the method to obtain the shear strength of CES beams is proposed. Finally, the proposed model is compared with other calculation methods from codes AISC 360 (USA, North America), Eurocode 4 (Europe), YB 9082 (China, Asia), JGJ 138 (China, Asia), and AS/NZS 2327 (Australia/New Zealand, Oceania) using the available test data consisting of 45 CES beams. The results indicate that the proposed model can predict the shear strength of CES beams with sufficient accuracy and safety. Without considering the deformation compatibility, the calculation methods from the codes AISC 360, Eurocode 4, YB 9082, JGJ 138, and AS/NZS 2327 lead to excessively conservative or unsafe predictions.

에너지 소산형 감쇠기를 이용한 철근콘크리트 전단벽-골조 시스템의 진동제어 (Vibration Control of Shear Wall-Frame System using Energy Dissipation Devices)

  • 박지훈;김길환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.578-581
    • /
    • 2007
  • In this study, the seismic control performance of energy dissipation devices installed in a shear all-frame structure is investigated through nonlinear time history analysis of a 12-story building. Inelastic shear walls are modeled using the multiple vertical line element model (MVLEM) and inelastic columns and girders were modeled using fiber beam elements. For a seismic load increased by 38% compared to the design load, the seismic control performance was analyzed based on the results of a nonlinear time history analysis in terms of the inter-story drift, the story shear and the flexural strain. Friction type dampers was found to performs best if they are installed in the form of a brace adjacent to the shear wall with the friction force of 15 % of the maximum story shear force induced in the original building structure without dampers.

  • PDF

Improvement of a Requirement for Providing Special Boundary Element Considering Feature of Domestic High-rise Shear Walls

  • Kim, Taewan
    • Architectural research
    • /
    • 제15권1호
    • /
    • pp.43-52
    • /
    • 2013
  • The reinforced concrete shear walls are being widely used in the domestic high-rise residential complex buildings. If designed by current codes, the special boundary element is needed in almost all high-rise shear wall buildings. This is because the equation for determining the provision of the special boundary element in the current codes cannot reflect the characteristics of the domestic high-rise shear walls with high axial load ratio and high proportion of elastic displacement to total displacement. In this study, a new equation to be able to reflect the characteristics is proposed. By using the equation, the special boundary element may not be necessary in certain cases so that structural engineers can relieve the burden of installing the special boundary element in every high-rise shear wall.

슬래브-기둥 접합부의 내진성능을 위한 래티스 전단보강 (Lattice Shear Reinforcement for Earthquake-Resistance of Slab-Column Connection.)

  • 김유니;박홍근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.26-29
    • /
    • 2006
  • A flat plate-column connection is susceptible to brittle punching shear failure, which may result in the necessity of shear reinforcement. In present study, experimental tests were performed to study the capacity of slab-column connections strengthened with lattice, stud rail, shear band and stirrup under gravity and cyclic lateral load. Among them, the capacity of the specimens with lattice are superior to the others due to the truss action of the lattice bars and dowel action of the longitudinal bars as well as the shear resistance of the web re-bar. On the other hand, the strengths of the specimens with stud rail, shear band and stirrup are lower than the estimated strength by the ACI, therefore design formulas of the ACI are needed to revise.

  • PDF

구조용 집성판(CLT)-콘크리트 경계면의 전단성능 평가 (Shear Performance Evaluation at the Interface Between CLT and Concrete)

  • 박금성
    • 한국공간구조학회논문집
    • /
    • 제21권3호
    • /
    • pp.35-42
    • /
    • 2021
  • An experimental study was carried out to evaluate the shear performance at the interface composed of structural laminates and concrete. The main variables are the number of CLT layers and the shape of the shear connector. The number of CLT layers consisted of 3 and 5 layers. A total of 6 test specimens for shear performance evaluation were prepared in the form of a shear connector, a direct screw type and a vertically embedded type. As a result of the experiment, similar behavior was shown in all specimens, regardless of the number of layers, including direct screw type (SC series) and vertically embedded type (VE series). The behavior at the joint surface was damaged due to the occurrence of initial shear cracks, expansion of shear groove cracks, and splaying at the interface after the maximum load.After the maximum load, the shear strength decreased gradually due to the effect of the shear connector. It can be seen that the shear strength of all specimens is determined by shear and compression stress failure of concrete at the interface of the notch joint.

지반과 쏘일네일링 사이의 전단거동에 관한 연구 (Shear Behavior between Ground and Soil-Nailing)

  • 서형준;이인모
    • 한국지반공학회논문집
    • /
    • 제30권3호
    • /
    • pp.5-16
    • /
    • 2014
  • 쏘일네일링은 지반과 그라우팅 사이의 주면마찰력과 보강재의 인장력을 통해서 저항하는 공법이다. 인발시험을 할 때는 이 두 요소를 모두 고려한 하중-변위 곡선을 얻게 된다. 따라서 본 논문에서는 지반과 그라우팅 사이의 순 하중-변위 곡선을 산정하여 지반과 그라우팅 사이의 전단거동을 규명하는 것이 목적이다. 주면마찰력 산정 이론을 통해서 이론적으로 지반과 그라우팅 사이의 하중-변위 곡선을 산정하였다. 또한 이론 검증을 위해서 지반조건과 시공조건을 변화해 가며 다량의 현장인발시험을 실시하였다. 인발시험을 통해 산정된 하중-변위 곡선에서 철근의 하중-변위 곡선을 빼내게 되면 지반과 그라우팅 사이의 순 하중-변위 곡선을 산정할 수 있으며, 이를 이론식과 비교해 보았을 때 유사한 결과를 얻었다. 이러한 결과를 통해서 지반 및 시공 조건이 주어질 때, 지반과 쏘일네일링 사이에서 발생하는 변위를 예측할 수 있다.