• Title/Summary/Keyword: Shear load

Search Result 2,625, Processing Time 0.029 seconds

Analysis of a Load Carrying Behavior of Shear Connection at the Interface of the Steel-Concrete Composite Beam (합성보 전단연결부의 구조거동에 대한 비교 분석)

  • Shin, Hyun Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.737-747
    • /
    • 2005
  • The connection of the slab with the steel beam and thus, the transmission of shear force at the interface of the steel-concrete composite beams is achieved with shear connectors, in general, with shear studs. The composite action through these shear studs has a significant influence on the load carrying behavior of the composite beams. The load carrying capacity of studs is determined through push-out tests. At present, the transferability of this load carrying capacity of studs to composite beams, especially in cases of partial interaction, is being questioned by experimental and theoretical investigations. In this study, a finite element model for the simulation of the behavior of the standard push-out specimen and the composite beams without the implementation of the load-slip curve of the stud connectors from the push-out test is developed. The load carrying behavior of the studs in the composite beams is estimated and compared with the results of the push-out test. The reason for the difference in the load carrying behavior of the studs in the push-out test specimen and in the composite beams is found.

Measurement of Load Transfer between Anchor and Grout using Optical FBG Sensors embedded in Smart Anchor (FBG 센서가 내장된 스마트 앵커를 이용한 앵커와 그라우트의 하중전이 측정)

  • Suh, Dong-Nam;Kim, Young-Sang;Kim, Jae-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.505-510
    • /
    • 2008
  • FBG Sensor, which is smaller than strain gauge and has better durability and does not have a noise from electromagnetic waves, was adapted to develope a smart anchor. A series of pullout tests were performed to verify the feasibility of smart anchor and find out the load transfer mechanism around the steel wire fixed to rock with grout. Distribution of shear stresses at steel wire-grout interface is assessed from the measured strain distribution by the optical fiber sensors and compared with stress distributions predicted by Farmer's and Aydan's formulas. It was found that present theoretical formulas may underestimate the failure depth and magnitude of shear stresses when the pullout loads increase.

  • PDF

An Experimental Study on Flexural Repair of Reinforced Concrete Beams with the CFRP Sheet (탄소섬유시트를 사용한 철근콘크리트 구조물의 휨 보강에 관한 실험적 연구)

  • 박정원;박상렬;민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.781-786
    • /
    • 2000
  • This paper presents the behavior and strenghening effect of reinforced concrete rectangular beams strengthened sing CFRP sheets with different strengthening level. In general, normally strengthened beams are failed by interfacial shear failure (delamination) within concrete, instead of by tensile failure of the CFRP sheets. The delamination occurred suddenly and the concrete cover cracked vertically by flexure was spalled off due to the release energy. The ultimate load considerably increased with an increase of strengthening level, while the ultimate deflection significantly decreased. The tensile force of CFRP sheets and average shear stress of concrete at delamination failure were curvilinearly proportional to the strengthening level. Therefore, the increment of ultimate load obtained by strengthening was curvilinearly proportional to th strengthening level.

  • PDF

Strength Evaluation of a Doubler Plate of a Ship S011c111re subjected to Biaxial In-plane Compression and Shear Load (양축방향 면내압축과 전단하중을 받는 선박 이중판의 강도 평가)

  • 함주혁
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.85-91
    • /
    • 2001
  • A study for the structural strength analysis on the doubler plate subjected biaxial in-plane compression and shear load has been performed through the systematic evaluation process. In order to estimate the proper static strength of the doubler plate, non-linear elasto-plastic analysis is introduced. Gap element modeling for contact effect between the main plate and the doubler is prepared and nonlinear analysis procedures are illustrated based on MSC/N4W. In addition, some design guides are suggested through the consideration of several important effects such as corrosion of main plate, doubler width, doubler length and doubler thickness. Finally, theses result are compared with a developed design formula based on the buckling strength and general trends. The design guides, according to the variation of design parameters are discussed.

  • PDF

A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams

  • Ahmed, Ridha A.;Fenjan, Raad M.;Hamad, Luay Badr;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • v.9 no.1
    • /
    • pp.33-48
    • /
    • 2020
  • With the use of differential quadrature method (DQM), forced vibrations and resonance frequency analysis of functionally graded (FG) nano-size beams rested on elastic substrate have been studied utilizing a shear deformation refined beam theory which contains shear deformations influence needless of any correction coefficient. The nano-size beam is exposed to uniformly-type dynamical loads having partial length. The two parameters elastic substrate is consist of linear springs as well as shear coefficient. Gradation of each material property for nano-size beam has been defined in the context of Mori-Tanaka scheme. Governing equations for embedded refined FG nano-size beams exposed to dynamical load have been achieved by utilizing Eringen's nonlocal differential law and Hamilton's rule. Derived equations have solved via DQM based on simply supported-simply supported edge condition. It will be shown that forced vibrations properties and resonance frequency of embedded FG nano-size beam are prominently affected by material gradation, nonlocal field, substrate coefficients and load factors.

Geometry and load effects on transient response of a VFGM annular plate: An analytical approach

  • Alavia, Seyed Hashem;Eipakchi, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.179-197
    • /
    • 2019
  • In this article, the effect of different geometrical, materials and load parameters on the transient response of axisymmetric viscoelastic functionally graded annular plates with different boundary conditions are studied. The behavior of the plate is assumed the elastic in bulk and viscoelastic in shear with the standard linear solid model. Also, the graded properties vary through the thickness according to a power law function. Three types of mostly applied transient loading, i.e., step, impulse, and harmonic with different load distribution respect to radius coordinate are examined. The motion equations and the corresponding boundary conditions are extracted by applying the first order shear deformation theory which are three coupled partial differential equations with variable coefficients. The resulting motion equations are solved analytically using the perturbation technique and the generalized Fourier series. The sensitivity of the response to the graded indexes, different transverse loads, aspect ratios, boundary conditions and the material properties are investigated too. The results are compared with the finite element analysis.

Seismic Performance Evaluation of Apartment Buildings with Central Core

  • Lee, Joonho;Han, Seungho;Kim, Jinkoo
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.9-19
    • /
    • 2014
  • In this study the seismic performances of reinforced concrete apartment buildings with Y- and box-shaped plans having central core are investigated. Three types of model structures are designed for each shape depending on the amount of shear partition walls: structures with all shear walls, structures with all columns except the core walls, and structures with shear walls and columns combined. The required amount of concrete to satisfy the specified design loads is the largest in the all shear wall structures, and decreases as more and more shear walls are replaced with columns. The amount of re-bars increased significantly in the flat plate structures. According to nonlinear static and dynamic analysis results, the structures with all shear walls and all columns turn out to have the largest and the smallest strengths, respectively. However it is observed that even the all-column structures with shear core have proper load resisting capacity for design level seismic load.

Evaluation on Shear Behavior of Double-tee Dap-ends with the Least Depth from Optimization Proces (최적이론에 의하여 설계된 최소 깊이 더블티 댑단부 전단거동 평가)

  • 유승룡;김대훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.43-54
    • /
    • 1999
  • Shear tests are performed on four full-scale 12.5 m proto-type models, "least depth double tee," which are resulted from the optimization process. Domestic superimposed live load regulation, domestic material properties which is available to product. Korean building code requirements, construction environments and economy are considered as the main factors to establish the process. All of the specimens tested fully comply with the shear strength requirements as specified by ACI 318-95. The research has shown following results. 1) The development length requirement of ACI 318-95 does not seem a good predictor for the estimation of bond failure in a beam with the strands below the supports. 2) The load required for the first initial coner cracking in the dap end and first web shear cracking does not seem to have any relation with the dimension and shear strength of the section in the test beams. 3) The strand slip has a direct relationship with the web shear cracking. However, the coner cracking in the dap end does not give any help for the slip in anchorage. 4) Use of whole area for bearing steel at the bottom of dap end is desired for safe bearing pressure design in the precast prestressed double tee beams. 5) The deflection of beam influences directly on the amount of strand slip at the anchorage after initiation of it, and relationship between them are very linear.

Evaluation on Flexural Performance of One-Way Hollow Slabs according to the Shear Reinforcement (전단보강에 따른 일방향 중공슬래브의 휨 성능 평가)

  • Yu, Yu-Jin;Seok, Keun-Young;Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • The purpose of this study is intended to determine the validity of shear reinforcement by evaluating flexural performance in the hollow slab. The hollow slab is relatively light and second moment of inertia is large. Due to these characteristics, it can be used to slab system efficiently. Therefore the prediction of the structural behaviors is very important because of decrease of shear and flexural strength which is caused by hollow section of slab interior. In this study, the flexural test were performed to analyze the flexural capacity of the hollow slab w/ or w/o shear reinforcement. A total of six full scale specimens were tested. These specimens have three cases of reinforcing bar ratio, 0.009, 0.018 and 0.024. To verify the flexural behavior such as ultimate load, load-deflection and crack pattern, the flexural experiment were tested by using loading frame. Experimental results have shown that the flexural behavior are depend on the reinforcing bar ratio. Also the hollow slab with shear reinforcement have shown flexural behavior. Therefore, it is appropriate that the hollow slab is reinforced by shear reinforcement to improve the flexural performance of the hollow slab.

Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides

  • Al-Osta, Mohammed A.
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.37-49
    • /
    • 2019
  • In this study, the shear behaviour of reinforced concrete (RC) beams that were retrofitted using precast panels of ultra-high performance fiber reinforced concrete (UHPFRC) is presented. The precast UHPFRC panels were glued to the side surfaces of RC beams using epoxy adhesive in two different configurations: (i) retrofitting two sides, and (ii) retrofitting three sides. Experimental tests on the adhesive bond were conducted to estimate the bond capacity between the UHPFRC and normal concrete. All the specimens were tested in shear under varying levels of shear span-to-depth ratio (a/d=1.0; 1.5). For both types of configuration, the retrofitted specimens exhibited a significant improvement in terms of stiffness, load carrying capacity and failure mode. In addition, the UHPFRC retrofitting panels glued in three-sides shifted the failure from brittle shear to a more ductile flexural failure with enhancing the shear capacity up to 70%. This was more noticeable in beams that were tested with a/d=1.5. An approach for the approximation of the failure capacity of the retrofitted RC beams was evolved using a multi-level regression of the data obtained from the experimental work. The predicted values of strength have been validated by comparing them with the available test data. In addition, a 3-D finite element model (FEM) was developed to estimate the failure load and overall behaviour of the retrofitted beams. The FEM of the retrofitted beams was conducted using the non-linear finite element software ABAQUS.