• Title/Summary/Keyword: Shear key

Search Result 594, Processing Time 0.033 seconds

A Study on Shield Tunnel Assembling System Using a Cable and Island-Type Shear Key (강연선과 아일랜드타입 전단키를 이용한 쉴드터널 체결기술 연구)

  • Ma, Sang-Joon;Lee, Young-Sub;Kim, Dong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.17-25
    • /
    • 2015
  • In this study, a new segment assembling method using cable tensible force and island-type shear key was developed to improve the problems of bolt assembling method of shield tunnel. The bolting system and island-type shear key system were compared to analyze the mechanical behavior that occurs in the segment. The study results obtained from structural investigation and numerical analysis technique showed that the shear strength of island-type shear key is higher than that of the bolt system. With the increase of the tensile strength, it is expected that the stability of the segment will be secured.

Static behavior of stud shear connectors with initial damage in steel-UHPC composite bridges

  • Qi, Jianan;Tang, Yiqun;Cheng, Zhao;Xu, Rui;Wang, Jingquan
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.413-421
    • /
    • 2020
  • For steel-concrete girders made composite using shear studs, initial damage on studs induced by weld defect, unexpected overloading, fatigue and others might degrade the service performance and even threaten the structural safety. This paper conducted a numerical study to investigate the static behavior of damaged stud shear connectors that were embedded in ultra high performance concrete (UHPC). Parameters included damage degree and damage location. The material nonlinear behavior was characterized by multi-linear stress-strain relationship and damage plasticity model. The results indicated that the shear strength was not sensitive to the damage degree when the damage occurred at 2/3d (d is the stud diameter) from the stud root. An increased stud area would be engaged in resisting shear force as the distance of damage location from stud root increased and the failure section becomes inclined, resulting in a less reduction in the shear strength and shear stiffness. The reduction factor was proposed to consider the degradation of the shear strength of the damaged stud. The reduction factor can be calculated using two approaches: a linear relationship and a square relationship with the damage degree corresponding to the shear strength dominated by the section area and the nominal diameter of the damaged stud. It was found that the proposed method is preferred to predict the shear strength of a stud with initial damage.

Experimental and numerical study on mechanical behavior of RC shear walls with precast steel-concrete composite module in nuclear power plant

  • Haitao Xu;Jinbin Xu;Zhanfa Dong;Zhixin Ding;Mingxin Bai;Xiaodong Du;Dayang Wang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2352-2366
    • /
    • 2024
  • Reinforced concrete (RC) shear walls with precast steel-concrete composite modular (PSCCM) are strongly recommended in the structural design of nuclear power plants due to the need for a large number of process pipeline crossings and industrial construction. However, the effect of the PSCCM on the mechanical behavior of the whole RC shear wall is still unknown and has received little attention. In this study, three 1:3 scaled specimens, one traditional shear wall specimen (TW) and two shear wall specimens with the PSCCM (PW1, PW2), were designed and investigated under cyclic loadings. The failure mode, hysteretic curve, energy dissipation, stiffness and strength degradations were then comparatively investigated to reveal the effect of the PSCCM. Furthermore, numerical models of the RC shear wall with different PSCCM distributions were analyzed. The results show that the shear wall with the PSCCM has comparable mechanical properties with the traditional shear wall, which can be further improved by adding reinforced concrete constraints on both sides of the shear wall. The accumulated energy dissipation of the PW2 is higher than that of the TW and PW1 by 98.7 % and 60.0 %. The failure of the shear wall with the PSCCM is mainly concentrated in the reinforced concrete wall below the PSCCM, while the PSCCM maintains an elastic working state as a whole. Shear walls with the PSCCM arranged in the high stress zone will have a higher load-bearing capacity and lateral stiffness, but will suffer a higher risk of failure. The PSCCM in the low stress zone is always in an elastic working state.

Shear resistance of steel-concrete-steel deep beams with bidirectional webs

  • Guo, Yu-Tao;Nie, Xin;Fan, Jian-Sheng;Tao, Mu-Xuan
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.299-313
    • /
    • 2022
  • Steel-concrete-steel composite structures with bidirectional webs (SCSBWs) are used in large-scale projects and exhibit good mechanical performances and constructional efficiency. The shear behaviors of SCSBW deep beam members in key joints or in locations subjected to concentrated forces are of concern in design. To address this issue, experimental program is investigated to examine the deep-beam shear behaviors of SCSBWs, in which the cracking process and force transfer mechanism are revealed. Compared with the previously proposed truss model, it is found that a strut-and-tie model is more suitable for describing the shear mechanism of SCSBW deep beams with a short span and sparse transverse webs. According to the experimental analyses, a new model is proposed to predict the shear capacities of SCSBW deep beams. This model uses strut-and-tie concept and introduces web shear and dowel action to consider the coupled multi mechanisms. A stress decomposition method is used to distinguish the contributions of different shear-transferring paths. Based on case studies, a simplified model is further developed, and the explicit solution is derived for design efficiency. The proposed models are verified using experimental data, which are proven to have good accuracy and efficiency and to be suitable for practical application.

Numerical studies on non-shear and shear flows past a 5:1 rectangular cylinder

  • Zhou, Qiang;Cao, Shuyang;Zhou, Zhiyong
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.379-397
    • /
    • 2013
  • Large Eddy Simulations (LES) were carried out to investigate the aerodynamic characteristics of a rectangular cylinder with side ratio B/D=5 at Reynolds number Re=22,000 (based on cylinder thickness). Particular attention was devoted to the effects of velocity shear in the oncoming flow. Time-averaged and unsteady flow patterns around the cylinder were studied to enhance understanding of the effects of velocity shear. The simulation results showed that the Strouhal number has no significant variation with oncoming velocity shear, while the peak fluctuation frequency of the drag coefficient becomes identical to that of the lift coefficient with increase in velocity shear. The intermittently-reattached flow that features the aerodynamics of the 5:1 rectangular cylinder in non-shear flow becomes more stably reattached on the high-velocity side, and more stably separated on the low-velocity side. Both the mean and fluctuating drag coefficients increase slightly with increase in velocity shear. The mean and fluctuating lift and moment coefficients increase almost linearly with velocity shear. Lift force acts from the high-velocity side to the low-velocity side, which is similar to that of a circular cylinder but opposite to that of a square cylinder under the same oncoming shear flow.

Shear-lag behavior of prestressed concrete box-girder bridges during balanced cantilever construction

  • Zhong, Xingu;Zhang, Tianyu;Shu, Xiaojuan;Xu, Hongliang
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.469-479
    • /
    • 2017
  • Balanced cantilever construction is extensively used in the construction of prestressed concrete (PSC) box-girder bridges. Shear-lag effect is usually considered in finished bridges, while the cumulative shear-lag effect in bridges during balanced cantilever construction is considered only rarely. In this paper, based on the balanced cantilever construction sequences of large-span PSC box-girder bridges, the difference method is employed to analyze the cumulative shear-lag effect of box girders with varying depth under the concrete segments' own weight. During cantilever construction, no negative shear-lag effect is generated, and the cumulative shear-lag effect under the balanced construction procedure is greater than the instantaneous shear-lag effect in which the full dead weight is applied to the entire cantilever. Three cross-sections of Jianjiang Bridge were chosen for the experimental observation of shear-lag effect, and the experimental results are in keeping with the theoretical results of cumulative shear-lag effect. The research indicates that only calculating the instantaneous shear-lag effect is not sufficiently safe for practical engineering purposes.

Shear capacity of stud shear connectors with initial damage: Experiment, FEM model and theoretical formulation

  • Qi, Jianan;Wang, Jingquan;Li, Ming;Chen, Leilei
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.79-92
    • /
    • 2017
  • Initial damage to a stud due to corrosion, fatigue, unexpected overloading, a weld defect or other factors could degrade the shear capacity of the stud. Based on typical push-out tests, a FEM model and theoretical formulations were proposed in this study. Six specimens with the same geometric dimensions were tested to investigate the effect of the damage degree and location on the static behavior and shear capacity of stud shear connectors. The test results indicated that a reduction of up to 36.6% and 62.9% of the section area of the shank could result in a dropping rate of 7.9% and 57.2%, respectively, compared to the standard specimen shear capacity. Numerical analysis was performed to simulate the push-out test and validated against test results. A parametrical study was performed to further investigate the damage degree and location on the shear capacity of studs based on the proposed numerical model. It was demonstrated that the shear capacity was not sensitive to the damage degree when the damage section was located at 0.5d, where d is the shank diameter, from the stud root, even if the stud had a significant reduction in area. Finally, a theoretical formula with a reduction factor K was proposed to consider the reduction of the shear capacity due to the presence of initial damage. Calculating K was accomplished in two ways: a linear relationship and a square relationship with the damage degree corresponding to the shear capacity dominated by the section area and the nominal diameter of the damaged stud. This coefficient was applied using Eurocode 4, AASHTO LRFD (2014) and GB50017-2003 (2003) and compared with the test results found in the literature. It was found that the proposed method produced good predictions of the shear capacity of stud shear connectors with initial damage.

Shear resistance of corrugated web steel beams with circular web openings: Test and machine learning-based prediction

  • Yan-Wen Li;Guo-Qiang Li;Lei Xiao;Michael C.H. Yam;Jing-Zhou Zhang
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.103-117
    • /
    • 2023
  • This paper presents an investigation on the shear resistance of corrugated web steel beams (CWBs) with a circular web opening. A total of five specimens with different diameters of web openings were designed and tested with vertical load applied on the top flange at mid-span. The ultimate strengths, failure modes, and load versus middle displacement curves were obtained from the tests. Following the tests, numerical models of the CWBs were developed and validated against the test results. The influence of the web plate thickness, steel grade, opening diameter, and location on the shear strength of the CWBs was extensively investigated. An XGBoost machine learning model for shear resistance prediction was trained based on 256 CWB samples. The XGBoost model with optimal hyperparameters showed excellent accuracy and exceeded the accuracy of the available design equations. The effects of geometric parameters and material properties on the shear resistance were evaluated using the SHAP method.

Understanding of the Shear Bands in Amorphous Metals

  • Park, Eun Soo
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.63-73
    • /
    • 2015
  • Shear banding is an evidence of plastic instability that localizes large shear strains in a relatively thin band when a material is plastically deformed. Shear bands have attracted much attention in amorphous metals, because shear bands are the key feature that controls the plastic deformation process. In this article, we review recent advances in understanding of the shear bands in amorphous metals regarding: dislocations versus shear bands, the formation of shear bands, hot versus cold shear bands, and property manipulation by shear band engineering. Although there are many key issues that remain puzzling, the understanding built-up from these approaches will provide a new insight for tailoring shear bands in amorphous metals, which potentially leads to unique property changes as well as improved mechanical properties. Indeed, this effort might open a new era to the future use of amorphous metals as a new menu of engineering materials.

An improved multiple-vertical-line-element model for RC shear walls using ANN

  • Xiaolei Han;Lei Zhang;Yankun Qiu;Jing Ji
    • Earthquakes and Structures
    • /
    • v.25 no.5
    • /
    • pp.385-398
    • /
    • 2023
  • The parameters of the multiple-vertical-line-element model (MVLEM) of reinforced concrete (RC) shear walls are often empirically determined, which causes large simulation errors. To improve the simulation accuracy of the MVLEM for RC shear walls, this paper proposed a novel method to determine the MVLEM parameters using the artificial neural network (ANN). First, a comprehensive database containing 193 shear wall specimens with complete parameter information was established. And the shear walls were simulated using the classic MVLEM. The average simulation errors of the lateral force and drift of the peak and ultimate points on the skeleton curves were approximately 18%. Second, the MVLEM parameters were manually optimized to minimize the simulation error and the optimal MVLEM parameters were used as the label data of the training of the ANN. Then, the trained ANN was used to generate the MVLEM parameters of the collected shear walls. The results show that the simulation error of the predicted MVLEM was reduced to less than 13% from the original 18%. Particularly, the responses generated by the predicted MVLEM are more identical to the experimental results for the testing set, which contains both flexure-control and shear-control shear wall specimens. It indicates that establishing MVLEM for RC shear walls using ANN is feasible and promising, and that the predicted MVLEM substantially improves the simulation accuracy.