• 제목/요약/키워드: Shear characteristic

검색결과 502건 처리시간 0.039초

PET 고신축사 직물의 방향에 따른 역학적 특성의 변화 (The Variation of Mechanical Properties with Directions of PET High Stretch Fabrics)

  • 김영민;박종범;김주애;조현혹
    • 한국의류학회지
    • /
    • 제26권1호
    • /
    • pp.160-167
    • /
    • 2002
  • Stretch fabrics are wide-spread for high performance clothing use with requirements of fitness and adaptability to human's movement. A newly developed 100% PET high stretch fabric has excellent properties with respect to stretch, softness, bulkiness, and apparent volume compared to PET filament fabrics. The 100% PET high stretch fabric shows advantages of a dimensional stability, dye and agent adaptability in dying and finishing process, a property of stretch recovery after washing and lower production cost than that of spandex fabric. KES-FB was used to measure mechanical properties to various directions of the fabric. This study centered on whether the 100% PET high stretch fabric is suitable to quality and shape retention of fabric by testing several properties including tensile, compression, shear, bending and surface characteristic to various measuring directions. Tensile linearity showed maximum value at $0^{\circ}$ in plain and $90^{\circ}$ in twill. Shear Stiffness of plain and twill showed maximum value equally at $45^{\circ}\;and\;135^{\circ}$. Bending rigidity showed maximum value at $0^{\circ}$ in plain and $45^{\circ}$ twill. Mean deviation of MIU showed maximum value at $0^{\circ}\;and\;90^{\circ}$ in plain and $135^{\circ}$ in twill.

Seismic performance and design method of PRC coupling beam-hybrid coupled shear wall system

  • Tian, Jianbo;Wang, Youchun;Jian, Zheng;Li, Shen;Liu, Yunhe
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.83-96
    • /
    • 2019
  • The seismic behavior of PRC coupling beam-hybrid coupled shear wall system is analyzed by using the finite element software ABAQUS. The stress distribution of steel plate, reinforcing bar in coupling beam, reinforcing bar in slab and concrete is investigated. Meanwhile, the plastic hinges developing law of this hybrid coupled shear wall system is also studied. Further, the effect of coupling ratio, section dimensions of coupling beam, aspect ratio of single shear wall, total height of structure and the role of slab on the seismic behavior of the new structural system. A fitting formula of plate characteristic values for PRC coupling beams based on different displacement requirements is proposed through the experimental date regression analysis of PRC coupling beams at home and abroad. The seismic behavior control method for PRC coupling beam-hybrid coupled shear wall system is proposed based on the continuous connection method and through controlling the coupling ratio, the roof displacement, story drift angle of hybrid coupled shear wall system, displacement ductility of coupling beam.

원자로 노심으로 인한 노심지지동체의 동특성 변화에 관한 연구 (The Effect of the reactor core to the dynamic characteristic of core support barrel)

  • 강형선;반재삼;나상남;조규종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.859-862
    • /
    • 2002
  • The Core Support Barrel (CSB) is a major component of Reactor Internals, and is designed to support and protect the Reactor Core. In this study, Reactor Core, Core Shroud and CSB were simplified to coaxial cylinders and then the offset of Reactor Core & Core Shroud to the dynamic characteristic of CSB was analyzed. For the beam modes, natural frequencies of the cantilevered cylinder are compared with those of the cantilevered beam. And it was found out that shear modulus must be used correctly to convert the shell model to the equivalent beam model. From the dynamic characteristics of the beam model, it was found out that natural frequencies are proportional to the length of Reactor Core & Core Shroud and inversely proportional to the mass. From the comparison with the dynamic characteristics of a beam model and a lumped-mass model it was found out that the size of lumped-mass must be determined considering both the length and the mass of Reactor Core & Core Shroud.

  • PDF

Experimental investigation of low-velocity impact characteristics of steel-concrete-steel sandwich beams

  • Sohel, K.M.A.;Richard Liew, J.Y.;Alwis, W.A.M.;Paramasivam, P.
    • Steel and Composite Structures
    • /
    • 제3권4호
    • /
    • pp.289-306
    • /
    • 2003
  • A series of tests was conducted to study the behaviour of steel-composite sandwich beams under low velocity hard impact. Damage characteristic and performance of sandwich beams with different spacing of shear connector were evaluated under impact loading. Thin steel plates were used as top and bottom skins of the sandwich beams and plain concrete was used as the core material. Shear connectors were provided by welding of angle sections on steel plates. The sandwich beams were impacted at their midpoint by a hemi-spherical nose shaped projectile dropped from various heights. Strains on steel plates were measured to study the effects of impact velocity or impact momentum on the performance of sandwich beams. Spacing of shear connectors is found to have significant effects on the impact response of the beams.

절리면 거\ulcorner각의 손상을 고려한 개별체 절리 유한요소 (An Isoparmetric Kiscrete Joint Element with Joint Surface Degradation)

  • 이연규;이정인
    • 터널과지하공간
    • /
    • 제7권1호
    • /
    • pp.20-30
    • /
    • 1997
  • A discrete joint finite element with joint surface degradation was developed to investigate the shear behavior of rough rock joint. Isoparametric formulation was used for facilitating the implementation of the element in existing Finite Element Codes. The elasto-plastic joint deformation model with the discontinuity constitutive law proposed by Plesha was applied to the element. The reliability of the developed finite element code was successfully testified through numerical direct shear tests conducted under both constant normal stress and constant normal displacement conditions. The result of the numerical direct shear test showed that the code can capture characteristic deformation features envisaged in the direct shear test of rough rock joint.

  • PDF

Effect of chain structure of polypropylenes on the melt flow behavior

  • Lee, Young-Jun;Sohn, Ho-Sang;Park, Seung-Ho
    • Korea-Australia Rheology Journal
    • /
    • 제12권3_4호
    • /
    • pp.181-186
    • /
    • 2000
  • Rheological Properties of polypropylenes having different molecular structures (linear polypropylene (PPL) and branched one (PPB)) were studied. Both the extensional flow and oscillatory shear flow properties were checked. Especially, the melt strength of polypropylenes having various shear history were investigated by using in-house-made Rheometer (called SMER). Compared to linear polypropylene, the branched polypropylene shows enhanced melt strength during extensional flow due to the retarded relaxation of molecules. When the slope of melt tension was plotted against take up speed of melt strand, the characteristic peak was observed in case of branched polypropylene, while the linear polypropylene shows only monotonously decreasing pattern. This entanglement was partially disrupted by physical forces such as shear during melt extrusion. However, the melt strength of PPB after multiple extrusion is still higher than PPL, implying the loss of elasticity during multiple extrusion is not so comprehensive. On dynamic experiments, PPB shows typical shear thinning behavior and the tangent delta of PPB is lower than PPL, reflecting high elasticity of PPB.

  • PDF

자기력이 적용된 철가루 혼합 사질토의 전단강도특성 연구 (Study on Shear Strength Characteristic of Steel Particle-sand Mixture Influenced by Magnetic Force)

  • 조중기;장병욱;김성필;허준
    • 한국농공학회논문집
    • /
    • 제49권6호
    • /
    • pp.87-92
    • /
    • 2007
  • Strain-stress behavior of soil is of importance in dealing with geo-techniques which relate to bearing capacity, slope stability, earth pressure and many geo-technical problems. So understanding mechanism of the behavior and reinforcing soil to the required state has been an issue for many years. This paper presents the possibility of magnetic force in enhancing shear strength. To analyze the reinforcing effect, triaxial compression tests were performed on two sets of steel-sand mixtures, one of which is influenced by permanent magnet, NdFeB. With magnetic force under 50 kPa confining pressure, maximum shear strengths increased according to steel percentages but under 100 kPa, no significant changes in maximum shear strengths occurred. Therefore the analysis by Mohr's circles indicates that magnetic force converts the shearing characteristics of sand into those of clay.

불포화 강도특성을 고려한 도로 입상재료의 한계하중 평가 (Evaluation of Limit Load of Granular Pavement Materials Considering Unsaturated Shear Strength Characteristics)

  • 전혜지;박성완
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.673-678
    • /
    • 2010
  • In this paper, the limit load of granular materials was evaluated considering unsaturated shear strength. The unsaturated shear strength parameters were estimated using the results from triaxial compression test and soil-water characteristic curves test. In addition, the limit load of different rates of materials was compared. Also, two important design parameters, yield and failure load were defined utilizing 2-D nonlinear finite element analysis respectively.

  • PDF

Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity

  • Bobinski, J.;Tejchman, J.
    • Computers and Concrete
    • /
    • 제1권4호
    • /
    • pp.433-455
    • /
    • 2004
  • The paper presents results of FE-calculations on shear localizations in quasi-brittle materials during both an uniaxial plane strain compression and uniaxial plane strain extension. An elasto-plastic model with a linear Drucker-Prager type criterion using isotropic hardening and softening and non-associated flow rule was used. A non-local extension was applied in a softening regime to capture realistically shear localization and to obtain a well-posed boundary value problem. A characteristic length was incorporated via a weighting function. Attention was focused on the effect of mesh size, mesh alignment, non-local parameter and imperfections on the thickness and inclination of shear localization. Different methods to calculate plastic strain rates were carefully discussed.

그린팀버월 패널의 전단성능 (Shear performance of green timber wall panels)

  • 김윤희;신일중;장상식
    • 농업과학연구
    • /
    • 제38권3호
    • /
    • pp.541-547
    • /
    • 2011
  • Korean building industry was developed by concrete and steel construction. However, concrete and steel have some problems which low carbon storage capability and difficulty of recycling. According to many studies, timber has high carbon storage capability, high recycling capability and sustainable supporting capability. Focus on this factors of timber, make new wall structure as Green Timber Wall panels and check the shear performance to use wall system in housing construction such as light-weight timber construction and nondearing wall on other construction. In the results, B-4-B and B-4-S show similar modulus of shear stiffness on the table. GH-4-GH has slip shape failure mode between Green Timber Wall boards. GH-4-GV has most stable characteristic curve than other specimens.