• Title/Summary/Keyword: Shear center

Search Result 1,174, Processing Time 0.028 seconds

Analysis of Bed Shear Stress Distributions in Compound Open Channels Using Large Eddy Simulation. (LES를 이용한 복단면 개수로의 바닥전단응력 분포특성 분석)

  • Lee, Du Han
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.4
    • /
    • pp.199-209
    • /
    • 2018
  • In river design, consideration of bed shear stresses is necessary to secure stability of levee and floodplain. In this study distributions of bed shear stresses in compound open channels are analyzed through numerical simulation for various width and depth. LES solver in OpenFOAM is applied to 12 cases of compound channel shapes considering secondary flow which effects distributions of bed shear stresses. By the results time averaged velocity distributions, secondary currents, and distributions of bed shear stresses are analyzed. Overall distributions of bed shears in floodplain show that higher shear stresses are seen in left of floodplain and the shears decrease toward right of floodplain. However, high local variations in shear stresses are shown due to the secondary flow effects. In shallow floodplain, bed shear stresses show low value below 0.8 times of averaged bed shear. In deep floodplain, bed shear stresses show high value over 1.2 - 1.4 times of averaged bed shear.

Effect of dentin surface roughness on the shear bond strength of resin bonded restorations

  • Koodaryan, Roodabeh;Hafezeqoran, Ali;Poursoltan, Sajjad
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.3
    • /
    • pp.224-228
    • /
    • 2016
  • PURPOSE. This study aimed to investigate whether dentin surface preparation with diamond rotary instruments of different grit sizes affects the shear bond strength of resin-bonded restorations. MATERIALS AND METHODS. The buccal enamel of 60 maxillary central incisors was removed with a low speed diamond saw and wet ground with silicon carbide papers. The polished surfaces of the teeth were prepared with four groups of rotary diamond burs with super-coarse (SC), coarse (C), medium (M), and fine (F) grit sizes. Following surface preparation, 60 restorations were casted with nickel-chromium alloy and bonded with Panavia cement. To assess the shear bond strength, the samples were mounted on a universal testing machine and an axial load was applied along the cement-restoration interface at the crosshead speed of 0.5 mm/min. The acquired data was analyzed with one way ANOVA and Tukey post hoc test (${\alpha}=.05$). RESULTS. The $mean{\pm}SD$ shear bond strengths (in MPa) of the study groups were $17.75{\pm}1.41$ for SC, $13.82{\pm}1.13$ for C, $10.40{\pm}1.45$ for M, and $7.13{\pm}1.18$ for F. Statistical analysis revealed the significant difference among the study groups such that the value for group SC was significantly higher than that for group F (P<.001). CONCLUSION. Dentin surface roughness created by diamond burs of different grit sizes considerably influences the shear bond strength of resin bonded restorations.

Finite Element Analysis of Reinforced Concrete Shear Walls with a Crack under Cyclic Loading

  • Kato, S.;Ohya, M.;Shimaoka, S.;Takayama, M.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2001
  • The present paper investigates the nonlinear behavior of reinforced concrete shear walls with a crank based on a finite element analysis. The loading type is a horizontal cyclic one such as earthquake loads. Experiments of the shear walls with and without cranks, performed previously to see flow the behavior changes depending on the crank, are compared with the results obtained from the finite element analysis. The finite element analysis is based on an isoparametric degenerated shell formulation. The nonlinear constitutive equations fur concrete are modeled adopting the formulation based on a concept of Ring Typed-Lattice Model. The experiments indicate that the shear walls with a crank have low stiffness and relatively low carrying capacity compared with an ordinary plane shear wall without cranks and that they are more ductile, and the tendency is a1so confirmed based on the finite element analysis. Moreover, a good agreement between the experiments and analyses is obtained, accordingly, it is confined that the present numerical analysis scheme based on the Lattice Model is a powerful one to evaluate the behavior of reinforced concrete shear walls with cranks and without cranks.

  • PDF

Flexural properties, interlaminar shear strength and morphology of phenolic matrix composites reinforced with xGnP-coated carbon fibers

  • Park, Jong Kyoo;Lee, Jae Yeol;Drzal, Lawrence T.;Cho, Donghwan
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.33-38
    • /
    • 2016
  • In the present study, exfoliated graphite nanoplatelets (xGnP) with different particle sizes were coated onto polyacrylonitrile-based carbon fibers by a direct coating method. The flexural properties, interlaminar shear strength, and the morphology of the xGnP-coated carbon fiber/phenolic matrix composites were investigated in terms of their longitudinal flexural strength and modulus, interlaminar shear strength, and by optical and scanning electron microscopic observations. The results were compared with a phenolic matrix composite counterpart prepared without xGnP. The flexural properties and interlaminar shear strength of the xGnP-coated carbon fiber/phenolic matrix composites were found to be higher than those of the uncoated composite. The flexural and interlaminar shear strengths were affected by the particle size of the xGnP, while the particle size had no significant effect on the flexural modulus. It seems that the interfacial contacts between the xGnP-coated carbon fibers and the phenolic matrix play a role in enhancing the flexural strength as well as the interlaminar shear strength of the composites.

The Influence of Moisture on the Interface Shear Strength Between Geosynthetics (토목섬유의 접촉 전단강도에 대한 함수비의 영향)

  • Seo, Min-Woo;Park, In-Joon;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.75-85
    • /
    • 2004
  • Various geosynthetics are widely installed as a liner or a protective layer of waste landfills. The interface shear strength between the layers of geosynthetics in waste landfills is an important parameter to ensure the safety of bottom and cover system design. In this study, estimations of interface shear strength between geomembrane and geotextile or Geosynthetic Clay Liners (GCL) are performed by large direct shear tests. Especially, this research is focused on the effect of moisture within the interface shear strength between geosynthetics, because most interfaces are vulnerable to rain, leachate and groundwater beneath the liners.

Shear lag coefficient of angles with bolted connections including equal and different legs through finite element method

  • Shahbazi, Lida;Rahimi, Sepideh;Hoseinzadeh, Mohamad;Rezaieaan, Ramzan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.493-502
    • /
    • 2022
  • Shear lag phenomenon has long been considered in numerous structural codes; however, the AISC provisions have now no longer proposed any unique equation to calculate the shear lag ratio in bolted connections for angles in general. It is noticeable that, however, codes used in this case are largely conservative and need to be amended. A parametric study consisting of 27 angle sections with equal legs and different with bolted connections was performed to investigate the effects of shear lag on the ultimate tensile capacity of angle members. The main parameters were: steel grade, connection length and eccentricity from the center of the plate, as well as the number of rows of bolts parallel to the applied force. The test results were compared with the predictions of the classical 1-x/l law proposed by Mons and Chesen to investigate its application to quantify the effect of shear lag. A parametric study was performed using valid FE models that cover a wide range of parameters. Finally, based on the numerical results, design considerations were proposed to quantify the effect of shear lag on the ultimate tensile capacity of the tensile members.

An Experimental Study to Prevent Debonding Failure of RC Beams Strengthened with GFRP Sheets (유리섬유시트로 휨보강된 RC보의 부착파괴 방지 상세에 관한 실험적 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.677-684
    • /
    • 2007
  • This study investigates the failure mechanism of RC beams strengthened with GFRP (glass fiber reinforced polymer) sheets. After analyzing failure mechanisms, the various methods to prevent the debonding failures, such as increasing bonded length of GFRP sheets, U-shape wrappings and epoxy shear keys are examined. The bonded length of GFRP sheets are calculated based on the assumed bond strengths of epoxy resin. The U-shape wrappings are either adopted at the end or center of the CFRP sheets bonded to the beam soft. The epoxy shear keys are embedded to the beam soft to provide sufficient bond strength. The end U-wrappings and the center U-wrappings are conventional, while epoxy shear keys are new details developed in this study. A total six half-scale RC beams have been constructed and tested to investigate the effectiveness of each methods to prevent debonding failure of GFRP sheets. From the experimental results, it was found that increasing bonded length or end U-wrappings do not prevent debonding failure. On the other hand, the beams with center U-wrappings and shear keys reached an ultimate state with their sufficient performance. The center U-wrappings tended to control debonding of the longitudinal GFRP sheets because the growth of the longitudinal cracks along the edges of the composites was delayed. In the case of shear keys, it was sufficient to prevent debonding and the beam was failed by GFRP sheets rupture.

Shear Bonding Strength of Three Cements Luted on Pediatric Zirconia Crowns and Dentin of Primary Teeth (3종 시멘트로 접착한 소아용 기성 지르코니아 전장관과 유치 상아질의 전단결합강도)

  • Lee, Jeongeun;Park, Howon;Lee, Juhyun;Seo, Hyunwoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.3
    • /
    • pp.314-323
    • /
    • 2018
  • The aim of this study was to evaluate the shear bond strength of three luting cements and to identify the effect of thermocycling. Zirconia discs were made similar to the inner surface of a preformed pediatric zirconia crown ($NuSmile^{(R)}$ ZR crown: ZRCr). The similarity between the zirconia discs and the inner surface of a ZRCr was confirmed by scanning electron microscope. Three luting cements were $Ketac^{TM}$ Cem Permanent Glass Ionomer Luting Cement (KGI), $RelyX^{TM}$ Luting Plus Cement (RLP), $RelyX^{TM}$ Unicem Self-Adhesive Universal Resin Cement (RUR). Three luting cements were bonded according to the manufacturer's instructions for 60 zirconia discs and 60 dentin of primary teeth. Total of 120 specimens were divided into two subgroups: One was not aged, and the other was tested with 5500 thermocycling. Shear bond strength was measured using a universal testing machine, and the fracture patterns were observed with SEM. On the zirconia discs and the dentin of primary teeth, shear bond strength of RUR was higher than that of KGI and RLP, and there were statistically significant differences by cement type. The shear bond strength differences for RUR were not statistically significant depending on thermocycling.

Bulk Shear-Wave Transduction Experiments Using Magnetostrictive Transducers with a Thin Fe-Co Alloy Patch (철-코발트 합금 패치로 구성된 자기변형 트랜스듀서를 이용한 체적 전단파 발생 및 측정)

  • Park, Jae-Ha;Cho, Seung-Hyun;Ahn, Bong-Young;Kwon, Hyu-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1075-1081
    • /
    • 2010
  • Recently, the results of many studies have clarified the successful performance of magnetostrictive transducers in which a ferromagnetic patch is used for the transduction of guided shear waves; this is because a thin ferromagnetic patch with strong magnetostriction is very useful for generating and detecting shear wave. This investigation deals with bulk shear wave transduction by means of magnetostriction; on the other hand, the existing studies have been focused on guided shear waves. A modular transducer was developed; this transducer comprised a coil, magnets, and a thin ferromagnetic patch that was made of Fe-Co alloy. Some experiments were conducted to verify the performance of the developed transducer. Radiation directivity pattern of the developed transducer was obtained, and a test to detect the damage on a side drill hole of a steel block specimen was carried out. From the results of these tests, the good performance of the transducer for nondestructive testing was verified on the basis of the signal-to-noise ratio and narrow beam directivity.

Influence of Application Method on Shear Bond Strength and Microleakage of Newly Developed 8th Generation Adhesive in Primary Teeth (새로 개발된 8세대 접착제의 적용 방법에 따른 유치에서의 전단결합강도와 미세누출)

  • Ryu, Wonjeong;Park, Howon;Lee, Juhyun;Seo, Hyunwoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.2
    • /
    • pp.165-172
    • /
    • 2019
  • The purpose of this study was to evaluate the effect of application time and phosphoric acid etching of 8th generation adhesives containing functional monomer on adhesive performance in primary teeth. 80 extracted non-carious human primary teeth were selected and divided into 8 groups based on 3 factors: (1) adhesive: G-Premio bond and Single bond universal; (2) application time: shortened time and manufacture's instruction; (3) acid etching mode: self-etching and total-etching. Shear bond strength was measured using a universal testing machine, and fractured surface were observed under scanning electron microscope. Microleakage was evaluated by dye penetration depth. G-Premio bond were not significant different in shear bond strength and microleakage depending on application time of adhesive and acid etching mode. In Single bond universal, shear bond strength of short application time was significantly lower than that of long adhesive application time (p = 0.014). Clinically applicable shear bond strength values (> 17 MPa) were identified in all groups. These results suggested that G-Premio bond be used clinically for a short application time without phosphoric acid etching.