• Title/Summary/Keyword: Shear capacity

Search Result 1,899, Processing Time 0.022 seconds

Web-shear capacity of prestressed hollow-core slab unit with consideration on the minimum shear reinforcement requirement

  • Lee, Deuck Hang;Park, Min-Kook;Oh, Jae-Yuel;Kim, Kang Su;Im, Ju-Hyeuk;Seo, Soo-Yeon
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.211-231
    • /
    • 2014
  • Prestressed hollow-core slabs (HCS) are widely used for modern lightweight precast floor structures because they are cost-efficient by reducing materials, and have excellent flexural strength and stiffness by using prestressing tendons, compared to reinforced concrete (RC) floor system. According to the recently revised ACI318-08, the web-shear capacity of HCS members exceeding 315 mm in depth without the minimum shear reinforcement should be reduced by half. It is, however, difficult to provide shear reinforcement in HCS members produced by the extrusion method due to their unique concrete casting methods, and thus, their shear design is significantly affected by the minimum shear reinforcement provision in ACI318-08. In this study, a large number of shear test data on HCS members has been collected and analyzed to examine their web-shear capacity with consideration on the minimum shear reinforcement requirement in ACI318-08. The analysis results indicates that the minimum shear reinforcement requirement for deep HCS members are too severe, and that the web-shear strength equation in ACI318-08 does not provide good estimation of shear strengths for HCS members. Thus, in this paper, a rational web-shear strength equation for HCS members was derived in a simple manner, which provides a consistent margin of safety on shear strength for the HCS members up to 500 mm deep. More shear test data would be required to apply the proposed shear strength equation for the HCS members over 500 mm in depth though.

Prediction of the shear capacity of reinforced concrete slender beams without stirrups by applying artificial intelligence algorithms in a big database of beams generated by 3D nonlinear finite element analysis

  • Markou, George;Bakas, Nikolaos P.
    • Computers and Concrete
    • /
    • v.28 no.6
    • /
    • pp.533-547
    • /
    • 2021
  • Calculating the shear capacity of slender reinforced concrete beams without shear reinforcement was the subject of numerous studies, where the eternal problem of developing a single relationship that will be able to predict the expected shear capacity is still present. Using experimental results to extrapolate formulae was so far the main approach for solving this problem, whereas in the last two decades different research studies attempted to use artificial intelligence algorithms and available data sets of experimentally tested beams to develop new models that would demonstrate improved prediction capabilities. Given the limited number of available experimental databases, these studies were numerically restrained, unable to holistically address this problem. In this manuscript, a new approach is proposed where a numerically generated database is used to train machine-learning algorithms and develop an improved model for predicting the shear capacity of slender concrete beams reinforced only with longitudinal rebars. Finally, the proposed predictive model was validated through the use of an available ACI database that was developed by using experimental results on physical reinforced concrete beam specimens without shear and compressive reinforcement. For the first time, a numerically generated database was used to train a model for computing the shear capacity of slender concrete beams without stirrups and was found to have improved predictive abilities compared to the corresponding ACI equations. According to the analysis performed in this research work, it is deemed necessary to further enrich the current numerically generated database with additional data to further improve the dataset used for training and extrapolation. Finally, future research work foresees the study of beams with stirrups and deep beams for the development of improved predictive models.

Strengthening of T-beams using external steel clamps and anchored steel plates

  • Yunus Dere;Yasin Onuralp Ozkilic;Ali Serdar Ecemis;Hasan Husnu Korkmaz
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.405-417
    • /
    • 2023
  • In order to strengthen the reinforced concrete T-beams having insufficient shear strength, several strengthening techniques are available in the literature. In this study, three different strengthening strategies were numerically studied. First one is affixing steel plates to the beam surfaces. Second one includes tightening external steel bars vertically similar to beam stirrups. The last one is simultaneous application of these two strengthening procedures which is particularly proposed in this work. Available experimental test series in the literature were handled in the study. Finite element (FE) models of reinforced concrete beam specimens having sufficient (Beam-1) and low shear capacity (Beam-2) were created within ABAQUS environment. Strengthened beams with different techniques were also modelled to reflect improved shear capacity. FE simulations made it possible to investigate parameters that were not examined during the previous experimental studies. The results of the analyses were then compared and found consistent with the experimentally obtained data. Experimental and FEM analysis results are in agreement between 1% (closest) and 6%. (maximum). Beam-2 was stregthened with 5 new porposed methods. The rate of increase in shear strength varies between 33% and 64%. It was found that, the strengthening techniques were fairly useful in improving the shear capacity of the considered girder. The model with the proposed strengthening alternative has accomplished a higher load carrying capacity, ductility and stiffness than all of the other models.

Shear Strength of Single Anchors in Uncracked and Unreinforced Concrete (비균열·무근콘크리트의 단일앵커 전단내력 평가)

  • Kim, Sung-Yong;Kim, Kyu-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.171-181
    • /
    • 2003
  • This study concerns the prediction of shear capacity, as governed by concrete breakout failure, concrete pryout failure and steel failure, of single anchors located close to free edge and located far from a free edge and installed in uncracked, unreinforced concrete. For this purpose, the methods to evaluate the shear capacity of the single anchors in concrete are summarized and the experimental data are compared with capacities by the two present methods: the method of ACI 349-90 and concrete capacity design (CCD) method.

Application of Capacity Design Methodology to RC Coupled Shear Wall (능력설계에 의한 RC 연결전단벽 구조의 내진설계)

  • Lee, Han-Seon;Jeong, Seong-Wook;Ko, Dong-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.295-298
    • /
    • 2005
  • Coupled shear wall(CSW) has been adopted as a lateral force resisting system in building frame structures. New Zealand code recommends the capacity design in designing the CSW. Capacity design based on using moment redistribution of member force may provide the economical benefit to designer. In this study, CSW's are designed by both capacity design and strength -based design. The design results and the seismic performance are compared by using nonlinear static analyses. The amount of reinforcement of shear wall and the section area of steel coupling beams by capacity design appear to be reduced by 19$\%$ and 17$\%$, respectively. Also CSW designed by capacity design shows good seismic performance at the ultimate state.

  • PDF

Cyclic Lateral Load Test on the Punching Shear Strength and the Lateral Displacement Capacity of Slab-Column Connections (슬래브-기둥 접합부의 펀칭강도 및 횡변위 성능에 관한 반복 횡하중 실험)

  • Choi, Jung-Wook;Song, Jin-Gyu;Kim, Jun-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.99-108
    • /
    • 2007
  • In the flat-plate slab design of the KCI and ACI building code, the punching shear strength of connections with shear reinforcement can increase one and half times to that of connections without shear reinforcement. And the ACI-ASCE committee 352 recommendations propose limiting the direct shear ratio $V_g$/$V_c$ on interior connections to 0.4 to insure adequate drift capacity. In this study, four interior column-slab connections were tested to look into the punching shear strength and the lateral displacement capacity of the flat-plate slab with and without shear reinforcement under cyclic lateral loading. Based on the test results, it is found that the provision about punching shear strength in the codes may appropriate for the gravity loading only whereas it is unconservative for the lateral loading and that the limit of ACI-ASCE committee 352 appears conservative.

Experimental shear strengthening of GFRC beams without stirrups using innovative techniques

  • Hany, Marwa;Makhlouf, Mohamed H.;Ismail, Gamal;Debaiky, Ahmed S.
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.415-433
    • /
    • 2022
  • Eighteen (18) (120×300×2200 mm) beams were prepared and tested to evaluate the shear strength of Glass Fiber Reinforced Concrete (GFRC) beams with no shear reinforcement, and evaluate the effectiveness of various innovative strengthening systems to increase the shear capacity of the GFRC beams. The test variables are the amount of discrete glass fiber (0.0, 0.6, and 1.2% by volume of concrete) and the type of longitudinal reinforcement bars (steel or GFRP), the strengthening systems (externally bonded (EB) sheet, side near-surface mounted (SNSM) bars, or the two together), strengthening material (GFRP or steel) links, different configurations of NSM GFRP bars (side bonded links, full wrapped stirrups, side C-shaped stirrups, and side bent bars), link spacing, link inclination angle, and the number of bent bars. The experimental results showed that adding the discrete glass fiber to the concrete by 0.6%, and 1.2% enhanced the shear strength by 18.5% and 28%, respectively in addition to enhancing the ductility. The results testified the efficiency of different strengthening systems, where it is enhanced the shear capacity by a ratio of 28.4% to 120%, and that is a significant improvement. Providing SNSM bent bars with strips as a new strengthening technique exhibited better shear performance in terms of crack propagation, and improved shear capacity and ductility compared to other strengthening techniques. Based on the experimental shear behavior, an analytical study, which allows the estimation of the shear capacity of the strengthened beams, was proposed, the results of the experimental and analytical study were comparable by a ratio of 0.91 to 1.15.

Effect of Configuration of Shaft and Helix Plate on Bearing Capacity of Moderate-size Helical Pile : II. Bearing Capacity Prediction (중소구경 헬리컬 파일의 축과 원판의 형상이 지지력에 미치는 영향 평가 : II. 이론식과 토크에 의한 지지력 예측 비교)

  • Lee, Jongwon;Lee, Dongseop;Na, Kyunguk;Choi, Hangseok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • Various prediction methods for the bearing capacity of helical piles have been introduced with consideration of both the steel shaft and the helix plates attached to the shaft. In this paper, three representative methods, that is, individual bearing method, cylindrical shear method, and torque correlation method are discussed and compared to each other. The prediction methods were verified by comparing with a series of loading test results performed on moderate-size helical piles from the companion paper. As a result, the measured bearing capacity is greater than the bearing capacity predicted by the cylindrical shear method, but smaller than that of the individual bearing method. In addition, the bearing capacity predicted by the torque correlation method is in good agreement with the measured bearing capacity.

Shear Resistance of CIP Anchors under Dynamic Loading: Unreinforced Anchor (선설치앵커의 동적 전단하중에 대한 저항강도: 비보강 앵커)

  • Park, Yong Myung;Kang, Moon Ki;Kim, Dong Hyun;Lee, Jong Han;Kang, Choong Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • The Concrete Capacity Design(CCD) method has been used in the design of anchor since 2001 and Korean design code specify that concrete breakout capacity of CIP anchor under seismic load shall be taken as 75% of static capacity. In this study, an experimental study was performed to evaluate the concrete breakout capacity of unreinforced CIP anchors under dynamic shear force. For the purpose, three static and dynamic shear-loading tests were conducted using 20mm diameter anchors, respectively. The edge distance of 120mm was considered in the tests. In the dynamic tests, 15 cycles pulsating load with 1Hz speed was applied and the magnitude of loading step was increased until concrete breakout failure occurs. From the tests, the concrete breakout capacity under dynamic shear loading showed nearly same capacity by static loading.

Performance Based Seismic Design of Apartment Houses by Applying Seismic Rebar (공동주택의 성능기반설계 시 내진철근의 영향평가)

  • Jo, Min-Joo;Yu, Seong-Yong;Kang, Ji-Yeon;Kim, Hyung-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.115-122
    • /
    • 2017
  • In this study, performance based seismic design was performed on the shear wall structural system and the beam-column system as a variable general rebar and seismic rebar, and comparing the capacity of the two models of each system. From nonlinear analyses, the capacity of the shear wall structural system applying seismic rebar has shown a stable behavior after the maximum strength, but there is little difference. Furthermore, both models showed similar capacity between story drift and story shear force and capacity of members. These results are attributed to the fact that the seismic rebar, which is highly ductile under the seismic load applied to the target structure, does not render sufficient capacity.