• 제목/요약/키워드: Shear Test

Search Result 4,452, Processing Time 0.03 seconds

Analysis of Shear Strength of Domestic Municipal Wastes by Large Shear Test (대형전단시험에 의한 국내 도시폐기물의 전단특성 분석)

  • 정하익;이용수;정길수;홍승서
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.529-532
    • /
    • 1999
  • This paper presented the characteristics of shear strength of domestic municipal wastes including S landfill wastes. A series of large direct shear tests were peformed with waste specimens sampled from S landfill located in middle area of domestic land. Investigated items were cohesion and internal friction angle of shear strength parameter. The test result was compared with existing test data. The research results showed that cohesion 0.1296∼0.1340kg/$\textrm{cm}^2$ and angle of friction 22.1$^{\circ}$∼25.3$^{\circ}$for S landfill wastes, cohesion 0∼0.381kg/$\textrm{cm}^2$ and friction angle 22.1$^{\circ}$∼41.3$^{\circ}$ for domestic landfill wastes.

  • PDF

A Study on the Slip Test of Shear Connector in Fire (전단 연결재의 고온 성능 평가에 관한 연구)

  • Han, Sang-Hoon;Park, Won-Sup;Lee, Choul-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.48-51
    • /
    • 2008
  • Shear connector is the element which resist in the horizontal shear force between steel and concrete of composite members and the stud bolt is often used because of its constructional convenience and serviceability. Although the push-out test is the most common method to evaluate shear slip behaviour, it is suitable for only room temperature conditions. In this study, we investigated about shear force, temperature distribution and slip displacement of shear connector in high temperature through the modified push-out test with electronic furnace invented for steel part heating.

  • PDF

Shear Strength Properties of Fiber Mixed Soil (섬유혼합토의 전단강도 특성)

  • Cha, Hyun-Ju;Choi, Jae-Won;Lee, Sang-Ho
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.123-128
    • /
    • 2002
  • This study was performed to use fiber mixed soil which has clayey soil or sandy soil with fibrillated fiber or monofilament fiber on purpose of construction materials, filling materials, and back filling materials. In addition, this study was conducted to analyze strength properties and fiber reinforcing effect with fiber mixed soil by direct-shear test. In case of fibrillated fiber mixed soil, the more quantity of fiber was in both cohesive soil and sandy soil, the larger shear stress was in respective step of normal load. The respective mixed soil at 0.5% and 0.1% mixing ratio of monofilament fiber mixed soil showed maximum shear stress. According to unconfined compression or direct-shear test, making specimen of the monofilament fiber mixed soil, it is required to be careful and stable mixing method, while it is expected that monofilament fiber mixed soil doesn't increase strength.

Experimental study for application of the punch shear test to estimate adfreezing strength of frozen soil-structure interface

  • Park, Sangyeong;Hwang, Chaemin;Choi, Hangseok;Son, Youngjin;Ko, Tae Young
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.281-290
    • /
    • 2022
  • The direct shear test is commonly used to evaluate the shear behavior of frozen soil-structure interfaces under normal stress. However, failure criteria, such as the Mohr-Coulomb failure criterion, are needed to obtain the unconfined shear strength. Hence, the punch shear test, which is usually used to estimate the shear strength of rocks without confinement, was examined in this study to directly determine the adfreezing strength. It is measured as the shear strength of the frozen soil-structure interface under unconfined conditions. Different soils of silica sand, field sand, and field clay were prepared inside the steel and concrete ring structures. Soil and ring structures were frozen at the target temperature for more than 24 h. A punch shear test was then conducted. The test results show that the adfreezing strength increased with a decrease in the target temperature and increase in the initial water content, owing to the increase in ice content. The adfreezing strength of field clay was the smallest when compared with the other soil specimens because of the large amount of unfrozen water content. The field sand with the larger normalized roughness showed greater adfreezing strength than the silica sand with a lower normalized roughness. From the experiment and analysis, the applicability of the punch shear test was examined to measure the adfreezing strength of the frozen soil-structure interface. To find a proper sample dimension, supplementary experiments or numerical analysis will be needed in further research.

Static and fatigue behavior of through-bolt shear connectors with prefabricated HFRC slabs

  • He, Yuliang;Zhuang, Jie;Hu, Lipu;Li, Fuyou;Yang, Ying;Xiang, Yi-qiang
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.109-121
    • /
    • 2022
  • Twelve push-out test specimens were conducted with various parameters to study the static and fatigue performance of a new through-bolt shear connector transferring the shear forces of interface between prefabricated hybrid fiber reinforced concrete (HFRC) slabs and steel girders. It was found that the fibers could improve the fatigue life, capacity and initial stiffness of through-bolt shear connector. While the bolt-hole clearance reduced, the initial stiffness, capacity and slippage of through-bolt shear connector increased. After the steel-concrete interface properties were improved, the initial stiffness increased, and the capacity and slippage reduced. Base on the test results, the equation of the load-slip curve and capacity of through-bolt shear connector with prefabricated HFRC slab were obtained by the regression of test results, and the allowable range of shear force under fatigue load was recommended, which could provide the reference in the design of through-bolt shear connector with prefabricated HFRC slabs.

Finite Elerllent Analysis of the Pull-out Test

  • Yi, Chang-Tok
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.49-62
    • /
    • 1996
  • The pull-out test is a common test for detemining the strength and deformation parameters between reinforcement and soil inl the design of reinforced earth structures. It is often assumed in the interpretation of the results from the test that the mobilization of shear strength along the reinforcement is uniform. The progressive shearing at the soil-reinforcement interface during the pull-out test often leads to incorrect calculation of the shear displacement response between the reinforcement and the soil. To investigate the effect of progressive shearing during the calculation of the shear stiffness of the soil-reinforcement interface, the finite element method is used to simulate the pullout test. The reinforcement, soil and interface behaviors are modeled by rosing linear and non-linear constitutive models. Shear stiffnesses are calculated by uaiHg conventional methods. It is found that there are considerable discrepancies 13etween the calculated shear stiffnesses and the correct stiffnesses which are used in the finite element analysis. The amount of error depends on the relative stiffness between reinforcement and soil and the size of the specimen being analyzed. The finite element results are also compared with the observed response from laboratory experiments. A revised interpretation of the pull-out test results is discussed.

  • PDF

Shear capacity of stud shear connectors with initial damage: Experiment, FEM model and theoretical formulation

  • Qi, Jianan;Wang, Jingquan;Li, Ming;Chen, Leilei
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.79-92
    • /
    • 2017
  • Initial damage to a stud due to corrosion, fatigue, unexpected overloading, a weld defect or other factors could degrade the shear capacity of the stud. Based on typical push-out tests, a FEM model and theoretical formulations were proposed in this study. Six specimens with the same geometric dimensions were tested to investigate the effect of the damage degree and location on the static behavior and shear capacity of stud shear connectors. The test results indicated that a reduction of up to 36.6% and 62.9% of the section area of the shank could result in a dropping rate of 7.9% and 57.2%, respectively, compared to the standard specimen shear capacity. Numerical analysis was performed to simulate the push-out test and validated against test results. A parametrical study was performed to further investigate the damage degree and location on the shear capacity of studs based on the proposed numerical model. It was demonstrated that the shear capacity was not sensitive to the damage degree when the damage section was located at 0.5d, where d is the shank diameter, from the stud root, even if the stud had a significant reduction in area. Finally, a theoretical formula with a reduction factor K was proposed to consider the reduction of the shear capacity due to the presence of initial damage. Calculating K was accomplished in two ways: a linear relationship and a square relationship with the damage degree corresponding to the shear capacity dominated by the section area and the nominal diameter of the damaged stud. This coefficient was applied using Eurocode 4, AASHTO LRFD (2014) and GB50017-2003 (2003) and compared with the test results found in the literature. It was found that the proposed method produced good predictions of the shear capacity of stud shear connectors with initial damage.

Determination of shear stiffness for headed-stud shear connectors using energy balance approach

  • Ye, Huawen;Huang, Ruosen;Tang, Shiqing;Zhou, Yu;Liu, Jilin
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.477-487
    • /
    • 2022
  • The shear stiffness of headed-stud shear connectors has no unified definition due to the nonlinear characteristics of its load-slip relationship. A unified framework was firstly adopted to develop a general expression of shear load-slip equation for headed-stud shear connectors varying in a large parameter range based on both force and energy balance. The pre- and post-yield shear stiffness were then determined through bilinear idealization of proposed shear load-slip equation. An updated and carefully selected push-out test database of 157 stud shear connectors, conducting on studs 13~30mm in diameter and on concretes 30~180 MPa in cubic compressive strength, was used for model regression and sensitivity analysis of shear stiffness. An empirical calculation model was also established for the stud shear stiffness. Compared with the previous models through statistical analysis, the proposed model demonstrates a better performance to predict the shear load-slip response and stiffness of the stud shear connectors.

Numerical simulation and experimental investigation of the shear mechanical behaviors of non-persistent joint in new shear test condition

  • Wang, Dandan;Zhang, Guang;Sarfarazi, Vahab;Haeri, Hadi;Naderi, A.A.
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.239-255
    • /
    • 2020
  • Experimental and discrete element method were used to investigate the effects of joint number and its angularities on the shear behaviour of joint's bridge area. A new shear test condition was used to model the gypsum cracks under shear loading. Gypsum samples with dimension of 120 mm×100 mm×50 mm were prepared. the length of joints was 2cm. in experimental tests, the joint number is 1, 2 and 3 and its angularities change from 0° to 90° with increment of 45°. Assuming a plane strain condition, special rectangular models are prepared with dimension of 120 mm×100 mm. similar to joints configuration in experimental test, 9 models with different joint number and joint angularities were prepared. This testing show that the failure process is mostly governed by the joint number and joint angularities. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced tensile cracks which are increased by increasing the rock bridge length. The strength of samples decreases by increasing the joint number and joint angularities. Failure pattern and failure strength are similar in both of the experimental test and numerical simulation.

Comparison of Shear Behavior for Quarry Blasted Rocks Based on Large Scale Direct Shear Test and Large Scale Triaxial Test (대형직접전단시험과 대형삼축시험을 통한 석산골재의 전단거동 특성 비교)

  • Lee, Dae-Soo;Kim, Kyoung-Yul;Oh, Gi-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.5-14
    • /
    • 2008
  • Shear characteristics of quarry blasted rocks were compared using large scale direct shear tests and triaxial tests. For comparison purpose, similar test conditions were simulated as much as possible and three types of relative density (50%, 70%, 90%) were employed for the test. Results indicate that stress-strain behavior shows the same trend for two tests, but the measured shear strengths differ for the different test ms and depends on the relative density. At low relative density, the internal friction angles from direct shear test are smaller than those from triaxial tests. However, at high relative density, this phenomenon is reversed.