• 제목/요약/키워드: Shear Stiffness

검색결과 1,597건 처리시간 0.022초

절리면에서의 전단거동 특성과 역학적 파라미터들 간의 상관성 (Relationship between shear behavior characteristics and mechanical parameters of fractures)

  • 이종욱;이찬구;황신일;장천중;최원학
    • 지질공학
    • /
    • 제3권1호
    • /
    • pp.1-20
    • /
    • 1993
  • 본 연구에서는 절리면에서의 전단거동 특성을 규명하기 위해 총 37개의 편마암종 코아 시편들을 대상으로 Portable Direct Shear Box를 이용하여 실내 직접전단시험을 수행하였다. 시편들에 가해진 최대 수직응력의 범위는 $5.60~25.67kg/\textrm{cm}^2$이었으며, 전단하중을 점진적으로 가중시키는 다단계 전단시험법에 준하여 실험하였다. 이러한 방법에 의한 실험결과들을 분석하여 절리면의 전단강도에 관한 경험식들을 제시하였으며, 전단거동에 영향을 미치는 역학적 파라미터들을 도출하여 상호 비교 분석하였다. 절리조도계수에 따른 전단강성의 변화는 수직응력이 증가함에 따라 시편의 절리조도계수가 클수록 전단강성의 값도 급증하는 경향을 보이며, 본 실험에 적용한 최대 수직응력 하에서 구한 평균 할선 전단강성은 약 $110.68kg/\textrm{cm}^3$였다. 또한 수직응력이 증가함에 따라 시편의 깅이와 전단강성 사이에는 크기효과(size effect)에 의한 반비례 관계를 나타내어, 동일한 절리조도계수를 지닌 시편일지라도 길이가 긴 시편의 경우에 전단강성이 감소함을 알 수 있었다.

  • PDF

횡방향 전단하중을 받는 단일방향 복합재료의 미시역학적 거동연구 (Micromechanical behavior of unidirectional composites under a transverse shear loading)

  • 최흥섭
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1896-1911
    • /
    • 1997
  • Effects of fiber-matrix interphases on the micro-and macro-mechanical behaviors of unidirectionally fiber-reinforced composites subjected to transverse shear loading at remote distance have been studied. The interphases between fibers and matrix have been modeled by the spring-layer which accounts for continuity of tractions, but allows radial and circumferential displacement jumps across the interphase that are linearly related to the normal and tangential tractions. Numerical calculations for basic cells of the composites have been carried out using the boundary element method. For an undamaged composite the micro-level stresses at the matrix side of the interphase and effective shear stiffness have been computed as functions of fiber volume ratio $V_f$ and interphase stiffness k. Results are presented for various interphase stiffnesses from the perfect bonding to the case of total debonding. For a square array composite the results show that for a high interphase stiffness k>10, an increase of $V_f$ increases the effective transverse shear modulus G over bar of the composite. For a relatively low interphase stiffness k<1, it is shwon that an increase of $V_f$ slightly decreases the effective transverse shear modulus. For the perfect bonding case, G over bar for a hexagonal array composite is slightly larger than that for a square array composite. Also for a damaged composite partially debonded at the interphase, local stress fields and effective shear modulus are calculated and a decrease in G over bar has been observed.

휨강성을 고려한 수정 FHWA 쏘일네일 설계법 제안 (Modified FHWA Design Method Considering Bending Stiffness of Soil Nail)

  • 김낙경;정정희;주용선;김성규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1406-1416
    • /
    • 2008
  • Soil nailing is used as a method of slope stabilization and excavation support. The design method of soil nail are based on experience or assumption of interaction between soil and reinforcement. Most design methods simply considers the tension of reinforcement for analysis of slope stabilization. Soil nails interact with soils under combined loading of shear and tension. Jewell & Pedley(1990) suggested a design equation of shear force with bending stiffness and discussed that the magnitude of the maximum shear force is small in comparison with the maximum axal force. However, they have used a very conservative limiting bearing stress on nails. This paper discusses that the shear strength of soil nails should not be disregarded with proper bearing stresses on nails. The modified FHWA design method was proposed by considering shear forces on nails with bending stiffness.

  • PDF

Design and analysis of slotted shear walls equipped with energy dissipating shear connectors

  • Shen, Shaodong;Nie, Xin;Pan, Peng;Wang, Haishen
    • Computers and Concrete
    • /
    • 제20권5호
    • /
    • pp.539-544
    • /
    • 2017
  • Shear walls have high stiffness and strength; however, they lack energy dissipation and repairability. In this study, an innovative slotted shear wall featuring vertical slots and steel energy dissipation connectors was developed. The ductility and energy dissipation of the shear wall were improved, while sufficient bearing capacity and structural stiffness were retained. Furthermore, the slotted shear wall does not support vertical forces, and thus it does not have to be arranged continuously along the height of the structure, leading to a much free arrangement of the shear wall. A frame-slotted shear wall structure that combines the conventional frame structure and the innovative shear wall was developed. To investigate the ductility and hysteretic behavior of the slotted shear wall, finite element models of two walls with different steel connectors were built, and pushover and quasi-static analyses were conducted. Numerical analysis results indicated that the deformability and energy dissipation were guaranteed only if the steel connectors yielded before plastic hinges in the wall limbs were formed. Finally, a modified D-value method was proposed to estimate the bearing capacity and stiffness of the slotted shear wall. In this method, the wall limbs are analogous to columns and the connectors are analogous to beams. Results obtained from the modified D-value method were compared with those obtained from the finite element analysis. It was found that the internal force and stiffness estimated with the modified D-value method agreed well with those obtained from the finite element analysis.

Static behavior of high strength friction-grip bolt shear connectors in composite beams

  • Xing, Ying;Liu, Yanbin;Shi, Caijun;Wang, Zhipeng;Guo, Qi;Jiao, Jinfeng
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.407-426
    • /
    • 2022
  • Superior to traditional welded studs, high strength friction-grip bolted shear connectors facilitate the assembling and demounting of the composite members, which maximizes the potential for efficiency in the construction and retrofitting of new and old structures respectively. Hence, it is necessary to investigate the structural properties of high strength friction-grip bolts used in steel concrete composite beams. By means of push-out tests, an experimental study was conducted on post-installed high strength friction-grip bolts, considering the effects of different bolt size, concrete strength, bolt tensile strength and bolt pretension. The test results showed that bolt shear fracture was the dominant failure mode of all specimens. Based on the load-slip curves, uplifting curves and bolt tensile force curves between the precast concrete slab and steel beam obtained by push-out tests, the anti-slip performance of steel-concrete interface and shear behavior of bolt shank were studied, including the quantitative analysis of anti-slip load, and anti-slip stiffness, frictional coefficient, shear stiffness of bolt shank and ultimate shear capacity. Meanwhile, the interfacial anti-slip stiffness and shear stiffness of bolt shank were defined reasonably. In addition, a total of 56 push-out finite element models verified by the experimental results were also developed, and used to conduct parametric analyses for investigating the shear behavior of high-strength bolted shear connectors in steel-concrete composite beams. Finally, on ground of the test results and finite element simulation analysis, a new design formula for predicting shear capacity was proposed by nonlinear fitting, considering the bolt diameter, concrete strength and bolt tensile strength. Comparison of the calculated value from proposed formula and test results given in the relevant references indicated that the proposed formulas can give a reasonable prediction.

일정 수직강성 조건하 화강암 인장절리의 전단거동 특성 (Shear Behavior of Rough Granite Joints Under CNS Conditions)

  • 박병기;이창수;전석원
    • 터널과지하공간
    • /
    • 제17권3호
    • /
    • pp.203-215
    • /
    • 2007
  • 암반의 역학적 변형거동과 안정성은 불연속면의 역학적 특성에 크게 좌우되기 때문에 터널이나 암반구조물의 안정성 해석 및 설계를 위해서는 반드시 암반 불연속면의 역학적 성질을 규명할 필요가 있다. 지하암반 절리면의 실제 거동을 실내에서 정확히 모사하기 위해 본 연구에서는 일련의 일정 수직강성 조건하 직접 전단시험을 수행하여 초기 수직응력, 전단속도 그리고 절리면의 거칠기가 거친 화강암 절리면의 전단거동특성에 미치는 영향을 살펴보았다. 일정 수직강성 조건에서 거친 암석절리에 대한 시험 결과 전단거동은 일반적으로 1차 정점 전단응력에서의 전단응력 감소 정도에 따라 크게 두 가지 형태의 전단거동을 보이는 것으로 구분되었다. 초기 수직응력이 증가함에 따라 정점 전단변위와 1차 정점 전단응력은 증가하지만 마찰각과 정점 마찰계수의 경우 감소하는 것으로 나타났으며, 전단강성과 평균마찰계수의 경우는 초기 수직응력에 영향을 받지 않는 것으로 나타났다. 거친 절리에 대한 전단속도의 영향은 초기 수직응력이 낮은 경우 일부 전단변수들에서 약간 관찰되었으나 수직응력이 증가함에 따라 대부분의 전단시험 결과변수들에서 전단속도의 영향은 미미하였다. 거칠기에 따른 전단거동의 변화를 분석하였으나 명확한 관련성이 나타나는 경우보다 시료간의 편차가 심한 경우가 많았다.

강성저하 실험식 및 연성계수를 이용한 철근콘크리트 전단벽 구조시스템의 비탄성 하중-변위 관계식 예측 (Prediction of Inelastic Force-Displacement Relationships of Reinforced Concrete Shear Wall Systems Based on Prescribed Ductilities)

  • 홍원기
    • 전산구조공학
    • /
    • 제8권4호
    • /
    • pp.159-171
    • /
    • 1995
  • 한 cycle의 이력곡선 loop을 완전히 표현하기 위해서는 pinch force, drift offset, effective stiffness, unloading, reloading, tangential stiffness 등의 변수가 필요하게 된다. 각 이력 loop에 대해 이들 변수들은 에너지 소산정도에 따라 변위와 축력의 함수로 표현될 수 있다. 본 논문에서는 먼저 16개의 전단벽 실험에서 얻어진 이력곡선 데이타를 분석하여 앞에 기술된 모든 변수를 표준화된 변위(.DELTA/.DELTA.y)의 함수로 표현했으며 이를 바탕으로 이력곡선의 포락선으로 표현되는 힘-변위관계를 예측할 수 있는 6개의 step을 제시하였다. 제시된 기법으로 구해진 비탄성 힘-변위관계는 실험곡선과 비교되었으며 내진설계에 있어서 가장 중요한 요소중 하나인 구조물의 비탄성 힘-변위관계를 예측하는 편리한 기법으로 이용될 수 있음을 보였다.

  • PDF

Evaluation of unilateral buckling of steel plates in composite concrete-steel shear walls

  • Shamsedin Hashemi;Samaneh Ramezani
    • Structural Engineering and Mechanics
    • /
    • 제88권2호
    • /
    • pp.129-140
    • /
    • 2023
  • To increase the stiffness and strength of a reinforced concrete shear wall, steel plates are bolted to the sides of the wall. The general behavior of a composite concrete-steel shear wall is dependent on the buckling of the steel plates that should be prevented. In this paper, the unilateral buckling of steel plates of a composite shear wall is studied using the Rayleigh-Ritz method. To model the unilateral buckling of steel plate, the restraining concrete wall is described as an elastic foundation with high stiffness in compression and zero stiffness in tension. To consider the effect of bolt connections on the plate's buckling, a constrained optimization problem is solved by using Lagrange multipliers method. This process is used to obtain the critical elastic local buckling coefficients of unilaterally-restrained steel plates with various numbers of bolts, subjected to pure compression, bending and shear loading, and the interaction between them. Using these results, the spacing between shear bolts in composite steel plate shear walls is estimated and compared with the results of the AISC seismic provisions (2016). The results show that the AISC seismic provisions(2016) are overly conservative in obtaining the spacing between shear bolts.

Influence of specimen height on the shear behavior of glass beads in the direct shear test

  • Young-Ho Hong;Yong-Hoon Byun;Jong-Sub Lee
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.461-472
    • /
    • 2023
  • A box scale affects the shear behavior of soils in the direct shear test. The purpose of this study is to investigate the scale effect on the shear behavior of dilative granular materials by testing specimens of different heights placed in a type C shear box. Experimental tests were performed on specimens composed of glass beads with different heights and equal initial void ratios. Results showed that the peak friction and dilation angles linearly increased with the specimen height; however, the residual friction angle remained relatively constant. Similarly, the shear stiffness increased with the specimen height, rapidly reaching its peak state. Height does not have a significant effect on the total volume changes; nevertheless, a high aspect ratio can be assumed to result in global and homogeneous failure. The results and interpretations may be used as reference for recommending shear box scale in direct shear tests.

Wave propagation in double nano-beams in thermal environments using the Reddy's high-order shear deformation theory

  • Fei Wu;Gui-Lin She
    • Advances in nano research
    • /
    • 제14권6호
    • /
    • pp.495-506
    • /
    • 2023
  • We study the bending wave, shear wave and longitudinal wave characteristics in the double nanobeams in this paper for the first time, in the process of research, based on the Reddy's higher-order shear deformation theory and considering shear layer stiffness, linear stiffness, inter-laminar stiffness, the pore volume fraction, temperature variation, functionally graded index influence on wave propagation, based on the nonlocal strain gradient theory and Hamilton variational principle, the wave equation of the double-nanometer beams are derived. Since there are three different motion states for the double nanobeams, which includes the cases of "in phase", "out of phase" and "one nanobeam fixed", the propagation characteristics of shear-, bending-, and longitudinal- waves in these three cases are discussed respectively, and some valuable conclusions are obtained.