• 제목/요약/키워드: Shear Slip

검색결과 484건 처리시간 0.027초

Retrofitting reinforced concrete beams by bolting steel plates to their sides -Part 2: Transverse interaction and rigid plastic design

  • Oehlers, Deric John;Ahmed, Marfique;Nguyen, Ninh T.;Bradford, Mark Andrew
    • Structural Engineering and Mechanics
    • /
    • 제10권3호
    • /
    • pp.227-243
    • /
    • 2000
  • In a companion paper, tests on bolted side plated beams have shown that side plates can substantially increase the strength of existing reinforced concrete beams with little if any loss of ductility and, furthermore, induce a gradual mode of failure after commencement of concrete crushing. However, it was also shown that transverse interaction between the side plates and the reinforced concrete beam, that is vertical slip and which is a concept unique to side plated beams, is detrimental. Transverse interaction increases the forces on the bolt shear connectors and, hence, weakens the beam. It also reduces the ability of the composite plated beam to yield and, hence, to attain its full flexural capacity. The generic concept of transverse interaction will be described in this paper and the results used to develop a new form of rigid plastic analysis for bolted side plated beams which is illustrated with an application.

Numerical simulation of concrete slab-on-steel girder bridges with frictional contact

  • Lin, Jian Jun;Fafard, Mario;Beaulieu, Denis
    • Structural Engineering and Mechanics
    • /
    • 제4권3호
    • /
    • pp.257-276
    • /
    • 1996
  • In North America, a large number of concrete old slab-on-steel girder bridges, classified noncomposite, were built without any mechanic connections. The stablizing effect due to slab/girder interface contact and friction on the steel girders was totally neglected in practice. Experimental results indicate that this effect can lead to a significant underestimation of the load-carrying capacity of these bridges. In this paper, the two major components-concrete slab and steel girders, are treat as two deformable bodies in contact. A finite element procedure with considering the effect of friction and contact for the analysis of concrete slab-on-steel girder bridges is presented. The interface friction phenomenon and finite element formulation are described using an updated configuration under large deformations to account for the influence of any possible kinematic motions on the interface boundary conditions. The constitutive model for frictional contact are considered as slip work-dependent to account for the irreversible nature of friction forces and degradation of interface shear resistance. The proposed procedure is further validated by experimental bridge models.

Influence of Soil Nailing Angle on Slope Reinforcement Effect by Finite Difference Analysis (유한차분해석을 통한 쏘일네일링 설치각도가 사면 보강효과에 미치는 영향)

  • You, Kwang-Ho;Min, Kyoung-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • 제29권8호
    • /
    • pp.27-36
    • /
    • 2013
  • LEM (Limit Equilibrium Method) based programs are commonly used for the designs of soil nailing as a slope reinforcement. However, there is a drawback that the interaction between ground and soil nailing is not properly reflected in those programs, which needs to be solved. For economical constructions and designs, research is also required on the support pattern of soil nailing. In this study, therefore, reinforcement effects of soil nailing were compared and analyzed by performing finite difference analyses which could properly consider the interaction between ground and soil nailing. As a result, when the angle from slope to nail is $90^{\circ}$, failure slip surface becomes the largest and thus the factor of safety becomes maximum.

A critical steel yielding length model for predicting intermediate crack-induced debonding in FRP -strengthened RC members

  • Dai, Jian-Guo;Harries, Kent A.;Yokota, Hiroshi
    • Steel and Composite Structures
    • /
    • 제8권6호
    • /
    • pp.457-473
    • /
    • 2008
  • Yielding of the internal steel reinforcement is an important mechanism that influences the Intermediate Crack-induced debonding (IC debonding) behavior in FRP-strengthened RC members since the FRP is required to carry additional forces beyond the condition of steel yielding. However, rational design practice dictates an appropriate limit state is defined when steel yielding is assured prior to FRP debonding. This paper proposes a criterion which correlates the occurrence of IC debonding to the formulation of a critical steel yielding length. Once this length is exceeded the average bond stress in the FRP/concrete interface exceeds its threshold value, which proves to correlate with the average bond resistance in an FRP/concrete joint under simple shear loading. This proposed IC debonding concept is based on traditional sections analysis which is conventionally applied in design practice. Hence complex bond stress-slip analyses are avoided. Furthermore, the proposed model incorporates not only the bond properties of FRP/concrete interface but also the beam geometry, and properties of steel and FRP reinforcement in the analysis of IC debonding strength. Based upon a solid database, the validity of the proposed simple IC debonding criterion is demonstrated.

Analysis of sliding/Impacting Wear in T7be to Convex Spring Contact and Relevant Contact Problem

  • Kim, Hyung-Kyu;Lee, Young-Ho;Heo, Sung-Pil;Jung, Youn-Ho;Ha, Jae-Wook;Kim, Seock-Sam;Jeon, Kyeong-Lak
    • KSTLE International Journal
    • /
    • 제3권1호
    • /
    • pp.60-67
    • /
    • 2002
  • Wear on the tube-to-spring contact is investigated experimentally, The vibration of the tube causes the wear while the springs support it As for the supporting conditions, the contacting normal farce of 5 N,0 N and the gap of 0.1 mm are applied. The gap condition is for considering the influence of simultaneous impacting and sliding on wear. The wear volume and depth decreases in the order of the 5 N,0 N and the gap conditions. This is explained from the contact geometry of the spring, which is convex of smooth contour, The contact shear force is regarded smaller in the case of the gap existence compared with the other conditions. The wear mechanism is considered from SEM observation of the worn surface. The variation of the normal contact traction is analysed using the finite element analysis to estimate the slip displacement range on the contact with consulting the fretting map.

Prediction of Deformation Texture in BCC Metals based on Rate-dependent Crystal Plasticity Finite Element Analysis (속도의존성 결정소성 모델 기반의 유한요소해석을 통한 BCC 금속의 변형 집합조직 예측)

  • Kim, D.K.;Kim, J.M.;Park, W.W.;Im, Y.T.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • 제23권4호
    • /
    • pp.231-237
    • /
    • 2014
  • In the current study, a rate-dependent crystal plasticity finite element method (CPFEM) was used to simulate flow stress behavior and texture evolution of a body-centered cubic (BCC) crystalline material during plastic deformation at room temperature. To account for crystallographic slip and rotation, a rate-dependent crystal constitutive law with a hardening model was incorporated into an in-house finite element program, CAMPform3D. Microstructural heterogeneity and anisotropy were handled by assigning a crystallographic orientation to each integration point of the element and determining the stiffness matrix of the individual crystal. Uniaxial tensile tests of single crystals with different crystallographic orientations were simulated to determine the material parameters in the hardening model. The texture evolution during four different deformation modes - uniaxial tension, uniaxial compression, channel die compression, and simple shear deformation - was investigated based on the comparison with experimental data available in the literature.

A Comparison Study for the Fatigue Behavior of H/T and T/S Bolt Friction Joint (H/T 와 T/S 볼트 마찰이음의 피로거동 비교·검토)

  • JUN, Je Sang;WOO, Sang Ik;LEE, Seong Heang;JUNG, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • 제8권3호통권28호
    • /
    • pp.139-150
    • /
    • 1996
  • H/T(High Tension) bolt is generally being used in joining the members of steel structure. It has some difficulties in management such as an adequate fastening force and a selection of proper instrument for fastening. T/S(Torque Shear Type High Tension) bolt which is more convenient and easier than H/T bolt in quality control has recently been developed. T/S bolts are produced and widely used these days in domestic, but those have not a detail regulation for their on. Those are only being used according to the specification for the H/T bolts. In this study, we tried to confirm the soundness of T/S bolts by the fatigue test of the modified specimens. First, we measured the reduction rate of the initial axial force with time at bolts. Second, we investigated the slip forces of bolts when the test specimen is loaded in tension. Third, we implemented the fatigue tests. During the test, we measured the variation of the axial forces of bolts under the cyclic loading. Finally, we compared and analyzed the fatigue behavior of H/T and T/S bolt, by S-N curve diagrams that are obtained in this study.

  • PDF

MIGRATION OF ELASTIC CAPSULE IN A CHANNEL FLOW (채널 유동 내 유연한 캡슐 움직임에 대한 수치해석)

  • Shin, S.J.;Sung, H.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.504-507
    • /
    • 2011
  • The inertial migration of a two-dimensional elastic capsule in a channel flow was studied over the Reynolds number range $1{\leq}Re{\leq}100$. The lateral migration velocity, slip velocity, and the deformation and inclination angle of the capsule were investigated by varying the lateral position, Reynolds number, capsule-to-channel size ratio(${\lambda}$), membrane stretching coefficient(${\Phi}$), and membrane bending coefficient(${\gamma}$). During the initial transient motion, the lateral migration velocity increased with increasing Re and ${\lambda}$ but decreased with increases in ${\Phi}$, ${\gamma}$ and the lateral distance from the wall. The initial behavior of the capsule was influenced by variation in the initial lateral position ($y_0$), but the equilibrium position of the capsule was not affected by such variation. The balance between the wall effect and the shear gradient effect determined the equilibrium position. As Re increased, the equilibrium position initially shifted closer to the wall and then moved towards the channel center. A peak in the equilibrium position was observed near Re=30 for ${\gamma}=0.1$, and the peak shifted to higher Re as ${\gamma}$ increased. Depending on the lateral migration velocity, the equilibrium position moved toward the centerline for larger ${\gamma}$ but moved toward the wall for larger ${\Phi}$ and ${\gamma}$.

  • PDF

Finite Element Analysis of Bolted Connections Using Joint Elements (접합요소를 이용한 볼트 접합부의 유한요소해석)

  • 변대근;윤성기;박성수
    • Computational Structural Engineering
    • /
    • 제7권2호
    • /
    • pp.139-146
    • /
    • 1994
  • In this study, the finite element analysis using joint elements, bolt elements, and shell elements is presented to investigate the behavior of bolted connections. The contact of plates and the high-strength, pretensioned bolts are simply idealized by joint elements and bolt elements, respectively. The initial stiffness is determined through the presented method and the non-linear analysis is archived by a constant-arc-length method based on Newton-Raphson method. The analysis results of a semi-rigid connection(web & flange angles) and a moment connection (shear & moment plates) demonstrate the exactness and applicability of the presented method. And the results indicates that the consideration of slip and 3-dimensional deformation is needed for an accurate prediction of bolted connections.

  • PDF

Advancing behavioral understanding and damage evaluation of concrete members using high-resolution digital image correlation data

  • Sokoli, Drit;Shekarchi, William;Buenrostro, Eliud;Ghannoum, Wassim M.
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.609-626
    • /
    • 2014
  • The capabilities of a high-resolution Digital Image Correlation (DIC) system are presented within the context of deformation measurements of full-scale concrete columns tested under reversed cyclic loading. The system was developed to have very high-resolution such that material strains on the order of the cracking stain of concrete could be measured on the surface of full-scale structural members. The high-resolution DIC system allows the measurement of a wide range of deformations and strains that could only be inferred or assumed previously. The DIC system is able to resolve the full profiles of member curvatures, rotations, plasticity spread, shear deformations, and bar-slip induced rotations. The system allows for automatic and objective measurement of crack widths and other damage indices that are indicative of cumulated damage and required repair time and cost. DIC damage measures contrast prevailing proxy damage indices based on member force-deformation data and subjective damage measures obtained using visual inspection. Data derived from high-resolution DIC systems is shown to be of great use in advancing the state of behavioral knowledge, calibrating behavioral and analytical models, and improving simulation accuracy.