• 제목/요약/키워드: Shear Line Method

검색결과 107건 처리시간 0.024초

유한요소 해석을 통한 차량용 도어 래치 사출성형 공정조건 결정 (Determined Car Door Latch Injection Molding Process Conditions through the Finite Elements Analysis)

  • 이중현;이선봉
    • 한국산학기술학회논문지
    • /
    • 제17권10호
    • /
    • pp.499-508
    • /
    • 2016
  • 사출 성형 방법은 금형내부에 가소화된 수지를 높은 압력으로 사출한 후 경화시켜 제품을 만드는 방법으로 자유로운 형상제조가 가능하며 수 만개의 제품생간이 가능한 장점을 가지고 있다. 본 논문에서는 사출성형 해석을 통하여 차량용 도어래치 공정조건을 결정하는 것이다. 적합한 사출성형 공정의 사출 유량을 선정하기 위하여, 사출 시간, 압력, 유동 패턴, 고화영역, 전단응력, 전단률, 웰드라인을 비교한1차 해석과 금형 온도 안정화 및 보압과 냉각 공정 조건 결정을 위한 2차 해석을 진행하여, 사출성형 특성과 제품 품질에 미치는 영향을 고찰하였다. 이에 따라 선정된 사출 성형 공정 조건으로 금형을 설계하고, 제품을 생산하였을 때 성형품의 외관을 관찰한 결과 웰드라인과 기공들이 존재하지 않음을 알 수 있었고, 시제품과 변형량을 비교하였을 때 문제가 없음을 확인할 수 있었다. 따라서 선정된 조건으로 제품을 생산하였을 때 기존 제품에 비해 불량률을 줄일 수 있으며, 제품 생산 시간의 손실을 최소화 하여 경쟁력을 확보할 수 있을 것이라 판단된다.

Connection stiffness and natural frequency of DuraGal lightweight floor systems

  • Zhao, X.L.;Taplin, G.;Alikhail, M.
    • Structural Engineering and Mechanics
    • /
    • 제15권3호
    • /
    • pp.269-284
    • /
    • 2003
  • This paper reports a series of component tests on a lightweight floor system and a method to predict the natural frequency of the floor using a frame analysis program. Full-scale floor tests are also briefly described. DuraGal steel Rectangular Hollow Sections (in-line galvanised RHS) are used as joists, bearers and piers in DuraGal lightweight floor systems. A structural grade particleboard is used as decking. Connection stiffness between different components (bearer, joist, pier and floor decking) was determined. A 40% composite action was achieved between the RHS joist and the particleboard. Both 2D and 3D models were developed to study the effect of connection stiffness on predicting the natural frequency of DuraGal lightweight floor systems. It has been found that the degree of shear connection between the bearer and the joist has a significant influence on the floor natural frequency. The predicted natural frequencies are compared with measured values from full scale floor testing.

Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material

  • Kocaturk, T.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • 제35권6호
    • /
    • pp.677-697
    • /
    • 2010
  • This paper focuses on geometrically non-linear static analysis of a simply supported beam made of hyperelastic material subjected to a non-follower transversal uniformly distributed load. As it is known, the line of action of follower forces is affected by the deformation of the elastic system on which they act and therefore such forces are non-conservative. The material of the beam is assumed as isotropic and hyperelastic. Two types of simply supported beams are considered which have the following boundary conditions: 1) There is a pin at left end and a roller at right end of the beam (pinned-rolled beam). 2) Both ends of the beam are supported by pins (pinned-pinned beam). In this study, finite element model of the beam is constructed by using total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element. The considered highly non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In order to use the solution procedures of Newton-Raphson type, there is need to linearized equilibrium equations, which can be achieved through the linearization of the principle of virtual work in its continuum form. In the study, the effect of the large deflections and rotations on the displacements and the normal stress and the shear stress distributions through the thickness of the beam is investigated in detail. It is known that in the failure analysis, the most important quantities are the principal normal stresses and the maximum shear stress. Therefore these stresses are investigated in detail. The convergence studies are performed for various numbers of finite elements. The effects of the geometric non-linearity and pinned-pinned and pinned-rolled support conditions on the displacements and on the stresses are investigated. By using a twelve-node quadratic element, the free boundary conditions are satisfied and very good stress diagrams are obtained. Also, some of the results of the total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element are compared with the results of SAP2000 packet program. Numerical results show that geometrical nonlinearity plays very important role in the static responses of the beam.

고주파 전기저항 용접강관의 제하 컴플라이언스법에 의한 파괴인성 평가 (Evaluation on fracture toughness of high frequency electric resistance welded steel pipe by unloading compliance method)

  • 오세욱;윤한기;안광주
    • Journal of Welding and Joining
    • /
    • 제5권2호
    • /
    • pp.44-52
    • /
    • 1987
  • The fracture toughness, $J_{IC}$ of high frequency electric resistance welded steel pipe for smooth and side-grooved CT specimen was evaluated by unloading compliance method. The crack growth, .${\delta}a$ was obtained from the equation of Donald and Saxena & Hudak, and $J_{IC}$ was determined from the curve of J-${\delta}a$ relations. The crack growth on the experiment using unloading compliance method is underestimated as compared with ${\delta}a$ measured directly by the SEM, so the reliability of $J_{IC}$ from saxena & Hudak equation is large than that from Donald. The $J_{IC}$ value of side-grooved CT Specimen is estimated less than that of smooth, and this is the effect of the side-groove, the shear-lip of crack tip and the reduction of crack tunnelling phenomena.

  • PDF

Solution method for the classical beam theory using differential quadrature

  • Rajasekaran, S.;Gimena, L.;Gonzaga, P.;Gimena, F.N.
    • Structural Engineering and Mechanics
    • /
    • 제33권6호
    • /
    • pp.675-696
    • /
    • 2009
  • In this paper, a unified solution method is presented for the classical beam theory. In Strength of Materials approach, the geometry, material properties and load system are known and related with the unknowns of forces, moments, slopes and deformations by applying a classical differential analysis in addition to equilibrium, constitutive, and kinematic laws. All these relations are expressed in a unified formulation for the classical beam theory. In the special case of simple beams, a system of four linear ordinary differential equations of first order represents the general mechanical behaviour of a straight beam. These equations are solved using the numerical differential quadrature method (DQM). The application of DQM has the advantages of mathematical consistency and conceptual simplicity. The numerical procedure is simple and gives clear understanding. This systematic way of obtaining influence line, bending moment, shear force diagrams and deformed shape for the beams with geometric and load discontinuities has been discussed in this paper. Buckling loads and natural frequencies of any beam prismatic or non-prismatic with any type of support conditions can be evaluated with ease.

Structural performance of an electricity tower under extreme loading using the applied element method- A case study

  • Chin, Jason Ah;Garcia, Mauricio;Cote, Jeffrey;Mulcahy, Ellen;Clarke, Jonathan;Elshaer, Ahmed
    • Wind and Structures
    • /
    • 제34권3호
    • /
    • pp.313-319
    • /
    • 2022
  • The resiliency of electricity transmission and distribution lines towards natural and man-made hazards is critical to the operation of cities and businesses. The extension of these lines throughout the country increases their risk of extreme loading conditions. This paper investigates a unique extreme loading condition of a 100-year old distribution line segment that passes across a river and got entangled with a boom of a ship. The study adopts the Applied Elements Method (AEM) for simulating 54 cases of the highly deformable structural behaviour of the tower. The most significant effects on the tower's structural integrity were found to occur when applying the load with components in all three of the cartesian directions (i.e., X, Y and Z) with the full capacities of the four cables. The studied extreme loading condition was determined to be within the tower's structural capacity, attributed to the shear failure of the anchor bolts, which acted as a sacrificing element that fails to protect the transfer of tensioning load to the supporting tower.

표면처리방법에 따른 Electroforming Gold와 레진과의 전단결합강도 (The Shear Bond Strength of Resin to Electroforming Gold according to the Surface Treatment)

  • 유병일;장문숙;윤태호;박주미;박찬운
    • 구강회복응용과학지
    • /
    • 제22권2호
    • /
    • pp.125-136
    • /
    • 2006
  • Statement of problem. The success of the bonding between electroforming gold and resin is dependent on the surface-conditioning technique but its effective technique has net been studied widely. Purpose. The purpose of the study was to evaluate the bond strength between the electroforming gold and resin with varying the surface-conditioning technique. Materials and methods. Sixty rectangular shaped metal specimens were made and one side of each specimen were gold hard plated. The sand-blasted specimens were divided into four experimental groups with fifteen specimens in each group and were treated as follows. Group 1: Silicoating (Rocatec, 3M ESPE)+ Sinfony (3M ESPE), Group 2: SR Link+ SR Adoro (Ivoclar Vivadent), Group 3: Tin plating (Microtin, Danville Engineering)+ SR Link+ SR Adoro, Group 4: Tin plating (Micro tin, Danville Engineering)+ Silicoating (Rocatec)+ Sinfony. Shear bond strength at metal-resin interface were measured using universal testing machine. Energy Dispersive x-ray analysis was done and scanning electron microscope images were taken and observed. Results and Conclusion. The following conclusions were drawn. 1. The mean shear bond strength values in order were 11.69MPa (Group 2), 22.35MPa (Group 3), 22.40MPa (Group 1) and 27.71MPa (Group 4). There was no significant difference in Group 1, Group 3 and Group 4(P>0.05). 2. In the EDX line analysis, the Au was detected on the surface of all specimen. $SnO_2$ showed on the surface of Group 2 and $SiO_2$ was detected on the surface of Group 1. 3. Increasing of roughness by sandblasting(Group 2), formation of micro-irregularities and tin crystals by electrolytic tin plating(Group 3) and formation of surface irregularities and $SiO_2$ layer(Group 1,4) were observed in SEM photo. 4. Tin plating(Group 3) and Rocatec treatment(Group 1) showed clinically effective shear bond strength(>20MPa), but when the two surface conditioning method were used together higher bond strength were achieved.

일반화된 Hoek-Brown 파괴기준식의 근사 Mohr 파괴포락선 정확도 개선 (Improving the Accuracy of the Mohr Failure Envelope Approximating the Generalized Hoek-Brown Failure Criterion)

  • 이연규
    • 터널과지하공간
    • /
    • 제34권4호
    • /
    • pp.355-373
    • /
    • 2024
  • 일반화된 Hoek-Brown (GHB) 식은 암반공학적 활용에 특화된 비선형 파괴기준식이며 최근 활용 빈도가 증가하고 있다. 그러나 GHB 식은 파괴 시점의 최소주응력과 최대주응력의 관계식이며 GSI≠100이면 파괴면에 작용하는 수직응력과 전단응력의 명시적 관계식 즉, Mohr 파괴포락선식으로 표현이 어렵다는 단점을 가지고 있다. 이 단점으로 인해 GHB 식을 한계평형해석, 상계한계해석, 임계평면법 등과 같은 수치해석기법에 적용하는 것이 쉽지 않다. 이에 따라 최근 GHB Mohr 파괴포락선을 근사적인 해석식으로 표현하려는 연구가 시도되고 있으며 관련 연구에 대한 지속적 관심이 여전히 필요하다. 이 연구에서는 기존 식보다 전단강도 예측 정확도가 높은 근사 GHB Mohr 파괴포락선 수식화 방법을 제시하였다. 개선된 수식화 과정에서는 접선마찰각의 근사 정확도를 높이는 방법과 비선형 GHB 파괴포락선의 접선식을 활용하여 전단강도 근사값의 정확도를 높이는 방법이 이용되었다. 이 논문의 후반부에서는 전단강도 예측 정확성과 계산시간 측면에서 제안된 근사 GHB 파괴포락선들의 장단점을 논의하였다.

선상가열 판변형 해석을 위한 고유변형도 영역의 결정법 (Determination of Inherent Strain Regions to Estimate Plate Deformation by Line Heating)

  • 장창두;하윤석;고대은;문성춘
    • 대한조선학회논문집
    • /
    • 제39권1호
    • /
    • pp.82-89
    • /
    • 2002
  • 선상가열에 의한 판 변형 예측은 고유변형도법에 의해 효율적으로 예측할 수 있다. 종래의 용접에서의 고유변형도 결정 방법은 용접 실험을 통하여 온도분포와 강의 상변태 영역(Ac3)을 시편을 절단하여 계측하고 이를 고유변형도 영역으로 간주하는 것이었다. 선상가열의 현상은 용접과 유사하므로, 용접과 같은 조건 하에서 얻어진 결과를 그대로 선상가열 해석에 이용하여 왔으나 이 결과는 가열 패턴이나 판 두께에 제한을 가지고 있다. 또한 현장에서는 선상가열 후 수냉 처리하는데 그 과정에서 강이 원래의 상으로 돌아가지 않고 마르텐사이트가 되면서 전단 소성 변화를 일으킨다는 점에 착안하여, 본 연구에서는 종래에 시편의 온도계측과 상변태 영역을 직접 계측하는 파괴검사법을 FEM을 이용한 이론해석으로 대체하였다. 즉 임의의 적절한 열속 모델에 대한 온도 분포를 얻고, 조직변화에 따라 추가적으로 발생하는 소성 영역을 고려하기 위하여 공석 온도 영역까지 포함시켜 온도계측과 파괴실험 없이 순수한 이론만으로 고유변형도 영역을 결정하는 새로운 방법을 제안하였다. 이 방법으로 결정한 영역을 이용하여 판의 변형을 예측하고 실험 결과와 비교하여 잘 일치함으로써 본 논문에서 제안한 방법의 유효성을 입증하였다.

Spin-coated ultrathin multilayers and their micropatterning using microfluidic channels

  • Hongseok Jang;Kim, Sangcheol;Jinhan Cho;Kookheon Char
    • Korea-Australia Rheology Journal
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 2003
  • A new method is introduced to build up organic/organic multilayer films composed of cationic poly(allylamine hydrochloride) (PAH) and negatively charged poly (sodium 4-styrenesulfonate) (PSS) using the spinning process. The adsorption process is governed by both the viscous force induced by fast solvent elimination and the electrostatic interaction between oppositely charged species. On the other hand, the centrifugal and air shear forces applied by the spinning process significantly enhances desorption of weakly bound polyelectrolyte chains and also induce the planarization of the adsorbed polyelectrolyte layer. The film thickness per bilayer adsorbed by the conventional dipping process and the spinning process was found to be about 4 ${\AA}$ and 24 ${\AA}$, respectively. The surface of the multilayer films prepared with the spinning process is quite homogeneous and smooth. Also, a new approach to create multilayer ultrathin films with well-defined micropatterns in a short process time is Introduced. To achieve such micropatterns with high line resolution in organic multilayer films, microfluidic channels were combined with the convective self-assembly process employing both hydrogen bonding and electrostatic intermolecular interactions. The channels were initially filled with polymer solution by capillary pressure and the residual solution was then removed by the .spinning process.