• 제목/요약/키워드: Shear Fracture Behavior

검색결과 273건 처리시간 0.024초

Experimental Characterization of Dynamic Tensile Strength in Unidirectional Carbon/Epoxy Composites

  • Taniguchi, Norihiko;Nishiwaki, Tsuyoshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • 제17권2호
    • /
    • pp.139-156
    • /
    • 2008
  • This study aims to characterize the dynamic tensile strength of unidirectional carbon/epoxy composites. Two different carbon/epoxy composite systems, the unidirectional T700S/2500 and TR50S/modified epoxy, are tested at the static condition and the strain rate of $100\;s^{-1}$. A high-strain-rate test was performed using a tension-type split Hopkinson bar technique with a specific fixture for specimen. The experimental results demonstrated that both tensile strength increase with strain rate, while the fracture behaviors are quite different. By the use of the rosette analysis and the strain transformation equations, the strain rate effects of material principal directions on tensile strength are investigated. It is experimentally found that the shear strain rate produces the more significant contribution to strain rate effect on dynamic tensile strength. An empirical failure criterion for characterizing the dynamic tensile strength was proposed based on the Hash-in's failure criterion. Although the proposed criterion is just the empirical formula, it is in better agreement with the experimental data and quite simple.

Microscopic Analysis of Prefinitely Strained Cement Paste

  • Song, Ha-Won;Kim, Jang-Ho;Choi, Jae-Hyeok;Byun, Keun-Joo
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.127-140
    • /
    • 1999
  • In this paper, a microscopic analysis of prefinitelv strained cement paste specimen was carried out. The microscopic behavior of concrete under triaxial stress must be fully understood in order to explain the additional ductilitv that comes from lateral confinement and to get microstructural information in large deformed and large strained concrete. The so-called "tube-squash" test was applied to achieve enormously high shear and deviatoric strain of concrete under extremly high pressure without fracture. Then, microscopic analyses by focusing on hydration and microstructure of Prefinitely strained cement paste were carried out on cored-out deformed and virgin (undeformed) cement paste specimens : the first specimen being 40 days old, the second one being one year old. The microscopic analysis bv Field Emission Scanning Electronic Microscope (FESEM) was carried out for comparison between the specimens after 40 days and those arter one year. For one year old specimens, X-Ray Diffractometer (XRD) analysis, Energy Dispersive x-rav Spectrometer (EDS) analysis, and Differential Thermal Analysis/Thermo-Gravitv (DTA/TG) analysis were also carried out to study the hydration and the microstructures of prefinitely strained cement paste specimen by focusing on the methodologies of their microscopic analyses. analyses.

  • PDF

Numerical study on steel plate-concrete composite walls subjected to projectile impacts

  • Lee, Kyungkoo;Shin, Jinwon;Lee, Jungwhee;Kim, Kapsun
    • Steel and Composite Structures
    • /
    • 제44권2호
    • /
    • pp.225-240
    • /
    • 2022
  • Local responses of steel plate-concrete composite (SC) walls under impact loads are typically evaluated using design equations available in the AISC N690s1-15. These equations enable design of impact-resistant SC walls, but some essential parts such as the effects of wall size and shear reinforcement ratio have not been addressed. Also, since they were developed for design basis events, improved equations are required for accurate prediction of the impact behaviors of SC walls for beyond design basis impact evaluation. This paper presents a numerical study to construct a robust numerical model of SC walls subjected to impact loads to reasonably predict the SC-wall impact behavior, to evaluate the findings observed from the impact tests including the effects of the key design parameters, and to assess the actual responses of full-scale SC walls. The numerical calculations are validated using intermediate-scale impact tests performed previously. The influences of the fracture energy of concrete and the conservative aspects of the current design equations are discussed carefully. Recommendations are made for design practice.

A Study on the Mechanical and Rheological Properties of the Recycled Polyethylene Composites with Ground Waste Tire Powder (재생 폴리에틸렌/폐타이어 분말 복합체의 기계적 특성 및 유변학적 특성에 관한 연구)

  • Kye, H.;Shin, K.;Bang, D.
    • Elastomers and Composites
    • /
    • 제41권2호
    • /
    • pp.97-107
    • /
    • 2006
  • The recycled polyethylene composites with various ratio of ground waste tire powder were manufactured by using a fully intermeshing co-rotating twin screw extruder for the reuse of waste tire scrap. In this investigation, the ground waste tire powders (GWTP) were blended with virgin HDPE and recycled polyethylene in the weight ratio of 0 to 50 wt.%. Mechanical properties such as tensile strength, elongation at break and impact strength were measured by using ASTM standard. The experimental results for the various composite showed that the tensile strength of composites decreased with increasing GWTP ratio, while elongation at break increased with the amounts of GWTP. On the other hand, the impact strength for the three kinds of composites showed maximum at the 30 wt.% of GWTP and then decreased. Morphology of the fracture surface tends to be rough with increasing waste tire powder content. Rheological properties were investigated by measuring the shear viscosity against shear rates and softening temperatures. They showed that melt viscosity of rubber composites in this study subsequently increased with increasing GWTP content as a result of increase of flow resistance against external stress and followed a Power-law behavior.

Structural Behavior of Joints between the Hysteretic Steel Damper Connector and RC Wall Depending on Connection Details (강재판형 이력댐퍼 연결부재와 RC벽체의 접합상세에 따른 구조거동)

  • Kang, In-Seok;Hur, Moo-Won
    • Journal of the Korea Concrete Institute
    • /
    • 제24권6호
    • /
    • pp.737-744
    • /
    • 2012
  • Hysteretic steel damper has been applied mainly to steel buildings. However, the usage in RC buildings is rapidly increasing recently. In order to apply the steel hysteretic damper in RC buildings, supporting elements of the damper should have sufficient strength and stiffness suitable for transferring damper forces to beams and walls. But due to the inevitable damage in reinforced concrete elements due to cracking, identification of the load transfer mechanism from damper to supporting element and hysteretic characteristics of the supporting element are extremely important in evaluating the damper behavior. Experiments were carried out on connection details between RC walls and supporting elements of the steel plate typed damper such as EaSy damper. The test results showed that fracture patterns of all specimens were almost identical except in the crack number and pattern associated with shear loading condition. Among the specimens, HD-3 shoed a well distributed cracks patterns along with good performance with respect to energy dissipation capacity, stiffness deterioration, and strength degradation.

Failure Behavior of Hollow Circular RC Column According to the Spacing of Spirals (나선철근 간격에 따른 중공 원형 RC 기둥의 파괴거동)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제20권6호
    • /
    • pp.46-55
    • /
    • 2016
  • Three small scale hollow circular reinforced concrete columns(4.5 aspect ratio) were tested under cyclic lateral load with constant axial load. Diameter of section is 400 mm, hollow diameter is 200 mm. The selected test variable are transverse steel ratio. Volumetric ratio of spirals of all the columns is 0.302~0.604% in the plastic hinge region. It corresponds to 45.9~91.8% of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by seismic concept. The final objectives of this study are to provide quantitative reference data and tendency for performance or damage assessment based on the performance levels such as cracking, yielding, steel fracture, etc. In this paper, describes mainly failure behavior, strength degradation behaviour, displacement ductility of circular reinforced concrete bridge columns with respect to test variables.

Estimation of Mechanical Representative Elementary Volume and Deformability for Cretaceous Granitic Rock Mass: A Case Study of the Gyeongsang Basin, Korea (경상분지 백악기 화강암 암반에 대한 역학적 REV 및 변형특성 추정사례)

  • Um, Jeong-Gi;Ryu, Seongjin
    • The Journal of Engineering Geology
    • /
    • 제32권1호
    • /
    • pp.59-72
    • /
    • 2022
  • This study employed a 3-D numerical analysis based on the distinct element method to estimate the strength and deformability of a Cretaceous biotite granitic rock mass at Gijang, Busan, Korea. A workflow was proposed to evaluate the scale effect and the representative elementary volume (REV) of mechanical properties for fractured rock masses. Directional strength and deformability parameters such as block strength, deformation modulus, shear modulus, and bulk modulus were estimated for a discrete fracture network (DFN) in a cubic block the size of the REV. The size of the mechanical REV for fractured rock masses in the study area was determined to be a 15 m cube. The mean block strength and mean deformation modulus of the DFN cube block were found to be 52.8% and 57.7% of the intact rock's strength and Young's modulus, respectively. A constitutive model was derived for the study area that describes the linear-elastic and orthotropic mechanical behavior of the rock mass. The model is expected to help evaluate the stability of tunnels and underground spaces through equivalent continuum analysis.

Recycling of Waste XLPE Using a Modular Intermeshing Co-Rotating Twin Screw Extruder (모듈라 치합형 동방향회전 이축 스크류식 압출기를 이용한 폐 XLPE의 재활용)

  • Bang, Dae-Suk;Oh, Soo-Seok;Lee, Jong-Keun
    • Elastomers and Composites
    • /
    • 제39권2호
    • /
    • pp.131-141
    • /
    • 2004
  • The recycling of waste XLPE(crosslinked polyethylene), which is a major source of scraps from high voltage power transmission cables, has been discussed. The waste XLPE scraps were ground into fine powder with various sizes from less than $100{\mu}m$ up to about $1000{\mu}m$ using two types of tailor-made pulverizers. The compounds were prepared in a modular intermeshing co-rotating twin screw extruder at various conditions such as different compositions, types and powder sizes of waste XLPE, screw configurations and various polymer matrices (LDPE, HDPE, PP, PS). The mechanical and rheological properties and the fracture surface or the compounds were investigated. It was found that an improved impact strength was obtained from the compound with white XLPE powder pulverized from the scraps without outer/inner semi-conductive layers. Generally, the impact strength increases with the content of XLPE but decreases with the size of XLPE. Especially for LDPE, the extrusion was possible up to 80 wt% loading of XLPE. Also, the impact strength increases with the number of kneading disc blocks in the given screw configurations. The melt viscosity of the compounds increases with increasing XLPE loading. However, the higher shear thinning behavior of the compounds at common shear rates implies proper processibility of the compounds. In addition, the impact strength for other polymer matrices used increases with XLPE and it is noticeable that the impact strength of PS/XLPE (80/20 wt%) compound was improved twice that of pure PS.

The study on the effect of fracture zone and its orientation on the behavior of shield TBM cable tunnel (단층파쇄대 규모 및 조우 조건에 따른 전력구 쉴드 TBM 터널의 거동 특성 분석)

  • Cho, Won-Sub;Song, Ki-Il;Kim, Kyoung-Yul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제16권4호
    • /
    • pp.403-415
    • /
    • 2014
  • Recently, the temperature rise in the summer due to climate change, power usage is increasing rapidly. As a result, power generation facilities have been newly completed and the need for ultra-high-voltage transmission line for power transmission of electricity to the urban area has increased. The mechanized tunnelling method using a shield TBM have an advantage that it can minimize vibrations transmitted to the ground and ground subsidence as compared with the conventional tunnelling method. Despite the popularity of shield TBM for cable tunnel construction, study on the mechanical behavior of cable tunnel driven by shield TBM is insufficient. Thus, in this study, the effect of fractured zone ahead of tunnel face on the mechanical behavior of the shield TBM cable tunnel is investigated. In addition, it is intended to compare the behavior characteristics of the fractured zone with continuous model and applying the interface elements. Tunnelling with shield TBM is simulated using 3D FEM. According to the change of the direction and magnitude of the fractured zone, Sectional forces such as axial force, shear force and bending moment are monitored and vertical displacement at the ground surface is measured. Based on the stability analysis with the results obtained from the numerical analysis, it is possible to predict fractured zone ahead of the shield TBM and ensure the stability of the tunnel structure.

Effect of the initial imperfection on the response of the stainless steel shell structures

  • Ali Ihsan Celik;Ozer Zeybek;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • 제50권6호
    • /
    • pp.705-720
    • /
    • 2024
  • Analyzing the collapse behavior of thin-walled steel structures holds significant importance in ensuring their safety and longevity. Geometric imperfections present on the surface of metal materials can diminish both the durability and mechanical integrity of steel shells. These imperfections, encompassing local geometric irregularities and deformations such as holes, cavities, notches, and cracks localized in specific regions of the shell surface, play a pivotal role in the assessment. They can induce stress concentration within the structure, thereby influencing its susceptibility to buckling. The intricate relationship between the buckling behavior of these structures and such imperfections is multifaceted, contingent upon a variety of factors. The buckling analysis of thin-walled steel shell structures, similar to other steel structures, commonly involves the determination of crucial material properties, including elastic modulus, shear modulus, tensile strength, and fracture toughness. An established method involves the emulation of distributed geometric imperfections, utilizing real test specimen data as a basis. This approach allows for the accurate representation and assessment of the diversity and distribution of imperfections encountered in real-world scenarios. Utilizing defect data obtained from actual test samples enhances the model's realism and applicability. The sizes and configurations of these defects are employed as inputs in the modeling process, aiding in the prediction of structural behavior. It's worth noting that there is a dearth of experimental studies addressing the influence of geometric defects on the buckling behavior of cylindrical steel shells. In this particular study, samples featuring geometric imperfections were subjected to experimental buckling tests. These same samples were also modeled using Finite Element Analysis (FEM), with results corroborating the experimental findings. Furthermore, the initial geometrical imperfections were measured using digital image correlation (DIC) techniques. In this way, the response of the test specimens can be estimated accurately by applying the initial imperfections to FE models. After validation of the test results with FEA, a numerical parametric study was conducted to develop more generalized design recommendations for the stainless-steel shell structures with the initial geometric imperfection. While the load-carrying capacity of samples with perfect surfaces was up to 140 kN, the load-carrying capacity of samples with 4 mm defects was around 130 kN. Likewise, while the load carrying capacity of samples with 10 mm defects was around 125 kN, the load carrying capacity of samples with 14 mm defects was measured around 120 kN.