• Title/Summary/Keyword: Shear Failure

Search Result 2,395, Processing Time 0.032 seconds

Deformation and Fracture Analysis of Honeycomb Sandwich Composites under Bending Loading (굽힘 하중을 받는 하니컴 샌드위치 복합재료의 변형 및 파괴 해석)

  • Kim Hyoung-Gu;Choi Nak-Sam
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • The bending strength characteristics and local deformation behaviors of honeycomb sandwich composites were investigated using three-point bending experiment and finite element simulation with a real model of honeycomb core. Two kinds of cell sizes of honeycomb core, two kinds of skin layer thicknesses, perfect bonding specimen as well as initial delamination specimen were used for analysis of stress and deformation behaviors of honeycomb sandwich beams. Various failure modes such as skin layer yielding, interfacial delamination, core shear deformation and local buckling were considered. Its simulation results were very comparable to the experimental ones. Consequently, cell size of honeycomb core and skin layer thickness had dominant effects on the bending strength and deformation behaviors of honeycomb sandwich composites. Specimens of large core cell size and thin skin layer showed that bending strength decreased by $30\~68\%$.

Diabetic Nephropathy in Childhood and Adolescence (II) ; Pathology and Pathophysiology (소아청소년기 당뇨병성 신병증 (II) ; 병리 소견 및 병태생리를 중심으로)

  • Ha, Tae-Sun
    • Childhood Kidney Diseases
    • /
    • v.13 no.2
    • /
    • pp.99-117
    • /
    • 2009
  • Diabetic nephropathy is a major cause of chronic renal failure in developing countries, and the prevalence rate has markedly increased during the past decade. Diabetic nephropathy shows various specific histological changes not only in the glomeruli but also in the tubulointerstitial region. In the early stage, the effacement of podocyte foot processes and thickened glomerular basement membrane (GBM) is noticed even at the stage of microalbuminuria. Nodular, diffuse, and exudative lesions, so-called diabetic glomerulosclerosis, are well known as glomerular lesions. Interstitial lesions also exhibit fibrosis, edema, and thickened tubular basement membrane. Diabetic nephropathy is considered to be multifactorial in origin with increasing evidence that one of the major pathways involved in the development and progression of diabetic nephropathy as a result of hyperglycemia. Hyperglycemia induces renal damage directly or through hemodynamic alterations, such as, glomerular hyperfiltration, shear stress, and microalbuminuria. Chronic hyperglycemia also induces nonhemodynamic dysregulations, such as, increased production of advanced glycosylation endproducts, oxidative stress, activation of signal pathway, and subsequent various cytokines. Those pathogenic mechanisms resulted in extracellular matrix deposition including mesangial expansion and GBM thickening, glomerular hypertrophy, inflammation, and proteinuria. In this review, recent opinions on the histopathologic changes and pathophysiologic mechanisms leading to initiation and progression of diabetic nephropathy will be introduced.

Experimental Study on Interfacial Bond Stress between Aramid FRP Strips and Steel Plates (아라미드 FRP 스트립과 강판 사이의 계면 부착응력에 관한 실험적 연구)

  • Park, Jai Woo;Ryoo, Jae Yong;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.4
    • /
    • pp.359-370
    • /
    • 2015
  • This paper presents the experimental results for the interfacial bond behaviour between AFRP strip and steel members. The objective of this paper is to examine the interfacial behavior and to evaluate the interfacial bond stress between Aramid FRP strips and steel plates. The test variables were bond length and AFRP thickness. 18 specimens were fabricated and one-face shear type bond tests were conducted in this study. There were two types of failure mode which were debonding and delamination between AFRP strip and steel plates. From the test, the load was increased with the increasing of bond length and AFRP thickness, which was observed that maximum increase of 63 and 86% were also achieved in load with the increasing of bond length and AFRP thickness, respectively. Finally, bond and slip characteristics had the elastic bond-slip model and it was observed that bond strength and fracture energy were not affected by bond length and AFRP thickness.

Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests

  • Zarnani, Saman;El-Emam, Magdi M.;Bathurst, Richard J.
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.291-321
    • /
    • 2011
  • The paper describes a simple numerical FLAC model that was developed to simulate the dynamic response of two instrumented reduced-scale model reinforced soil walls constructed on a 1-g shaking table. The models were 1 m high by 1.4 m wide by 2.4 m long and were constructed with a uniform size sand backfill, a polymeric geogrid reinforcement material with appropriately scaled stiffness, and a structural full-height rigid panel facing. The wall toe was constructed to simulate a perfectly hinged toe (i.e. toe allowed to rotate only) in one model and an idealized sliding toe (i.e. toe allowed to rotate and slide horizontally) in the other. Physical and numerical models were subjected to the same stepped amplitude sinusoidal base acceleration record. The material properties of the component materials (e.g. backfill and reinforcement) were determined from independent laboratory testing (reinforcement) and by back-fitting results of a numerical FLAC model for direct shear box testing to the corresponding physical test results. A simple elastic-plastic model with Mohr-Coulomb failure criterion for the sand was judged to give satisfactory agreement with measured wall results. The numerical results are also compared to closed-form solutions for reinforcement loads. In most cases predicted and closed-form solutions fall within the accuracy of measured loads based on ${\pm}1$ standard deviation applied to physical measurements. The paper summarizes important lessons learned and implications to the seismic design and performance of geosynthetic reinforced soil walls.

An Experimental Study on Seismic Capacity Improvement of Masonry Buildings by Glass Fiber Reinforced Methods (유리섬유보강에 의한 조적조 건축물의 내진 성능향상에 관한 실험 연구)

  • Cho, Sang-Min;Choi, Sung-Mo;Kwon, Ki-Hyuk;Lee, Su-Cheul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.2 s.13
    • /
    • pp.47-52
    • /
    • 2004
  • Whereas The masonry buildings are safe under gravity loads, most of the masonry buildings in Korea have many structural defects under a lateral load due to an earthquake acceleration. But there is no earthquake resistant design code for the Masonry in Korea. Therefore it may be necessary to be set up an seismic code and be suggested for reinforcing methods for existing masonry buildings. The purpose of this paper is to investigate seismic capacity of reinforced masonry buildings subjected to earthquake load. The typical two models of the masonry building in Korea are selected through a site investigation. On the basis of test results, the fiber reinforcing effect of the two models was considerable. The maximum base shear force and deformation capacity for RM were remarkably increased. It was found that the pier rocking failure was a dominant mode for the RM buildings during a seismic excitation.

Improvement of bearing capacity of footing on soft clay grouted with lime-silica fume mix

  • Fattah, Mohammed Y.;Al-Saidi, A'amal A.;Jaber, Maher M.
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.113-132
    • /
    • 2015
  • In this study, lime (L), silica fume (SF), and lime-silica fume (L-SF) mix have been used for stabilizing and considering their effects on the soft clay soil. The improvement technique adopted in this study includes improving the behaviour, of a square footing over soft clay through grouting the clay with a slurry of lime-silica fume before and after installation of the footing. A grey-colored densified silica fume is used. Three percentages are used for lime (2%, 4% and 6%) and three percentages are used for silica fume (2.5%, 5%, 10%) and the optimum percentage of silica fume is mixed with the percentages of lime. Several tests are made to investigate the soil behaviour after adding the limeand silica fume. For grouting the soft clay underneath and around the footing, a 60 ml needle was used as a liquid tank of the lime-silica fume mix. Slurried silica fume typically contains 40 to 60% silica fume by mass. Four categories were studied to stabilize soft clay before and after footing construction and for each category, the effectiveness of grouting was investigated; the effect of injection hole spacing and depth of grout was investigated too. It was found that when the soft clay underneath or around a footing is injected by a slurry of lime-silica fume, an increase in the bearing capacity in the range of (6.58-88)% is obtained. The footing bearing capacity increases with increase of depth of grouting holes around the footing area due to increase in L-SF grout. The grouting near the footing to a distance of 0.5 B is more effective than grouting at a distance of 1.0 B due to shape of shear failure of soft clay around the footing.

Modelling beam-to-column joints in seismic analysis of RC frames

  • Lima, Carmine;Martinelli, Enzo;Macorini, Lorenzo;Izzuddin, Bassam A.
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.119-133
    • /
    • 2017
  • Several theoretical and analytical formulations for the prediction of shear strength in reinforced concrete (RC) beam-to-column joints have been recently developed. Some of these predictive models are included in the most recent seismic codes and currently used in practical design. On the other hand, the influence of the stiffness and strength degradations in RC joints on the seismic performance of RC framed buildings has been only marginally studied, and it is generally neglected in practice-oriented seismic analysis. To investigate such influence, this paper proposes a numerical description for representing the cyclic response of RC exterior joints. This is then used in nonlinear numerical simulations of RC frames subjected to earthquake loading. According to the proposed strategy, RC joints are modelled using nonlinear rotational spring elements with strength and stiffness degradations and limited ductility under cyclic loading. The proposed joint model has been firstly calibrated against the results from experimental tests on 12 RC exterior joints. Subsequently, nonlinear static and dynamic analyses have been carried out on two-, three- and four-storey RC frames, which represent realistic existing structures designed according to old standards. The numerical results confirm that the global seismic response of the analysed RC frames is strongly affected by the hysteretic damage in the beam-to-column joints, which determines the failure mode of the frames. This highlights that neglecting the effects of joints damage may potentially lead to non-conservative seismic assessment of existing RC framed structures.

Stability Analysis and Reinforced Design Method of Excavation Slopes (굴착사면의 안정해석과 보강설계법)

  • 강예묵;이달원;조재홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.140-154
    • /
    • 1996
  • In this study, displacement, deformation, and stability according to change of cohesion and internal friction angle were investigated through elasto-plastic method, finite-element method, and in-site experiment when excavating soft ground using sheet pile. The results of the study were as follows : 1. The horizontal displacement was 5.5% of the excavation depth by the elasto-plastic method and 3.9% of the excavation depth by the on-site experiment at the final excavation depth(GL-8.Om) on the condition of double stair strut after excavating GL-6.Om. 2. Relationships between cohesion(c) and internal friction angle $({\varphi})$ when safety factor to the penetration depth was 1.2 is shown in the following equations : (a) c= -O.0086$({\varphi})$+ O.3(D=3m) and (b) c=-0.00933$({\varphi})$+0.14(D=4m). 3. The results of elasto-plastic method and the experiment show that possible excavation depth was GL-6.Om after setting single stair strut in a short period in terms of possibility of carrying out on the condition of experimental site on the contrary general reinforcement method, setting double stair strut after excavating GL-4.0m. 4. After setting the strut, distribution of the horizontal displacement had concentrated on the excavation base and possible local failure which the shear strain caused decreased by the strut reinforced. 5. After setting strut, displacement of sheet pile was decreased by half, the limit of stable excavation depth of ground was GL-8.Om, and the maximum horizontal displacement at the GL-8.Om was 1.6% of excavation depth by the elasto-plastic method, 0.7% of excavation depth by the finite-element method.

  • PDF

The Development of Rail-Transport Operation Control based on Unsaturated Soil Mechanics Concept (불포화토이론을 이용한 강우시 열차운전규제기준 개발)

  • Kim, Hyun-Ki;Shin, Min-Ho;Kim, Soo-Sam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.25-31
    • /
    • 2004
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment is defined to analyze the stability of embankment by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall Infiltration show that rainfall Infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. Therefore, it is judged that this rainfall index can be a good tool for the rail-transport operation control.

Withdrawal and Lateral Resistance of Nail Joints Composed of Dimension Lumber and OSB in Light-Frame Wood Construction (경골목구조에서 구조재와 오에스비로 구성된 못 접합부의 인발 및 전단성능)

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.211-220
    • /
    • 2013
  • The nailed joints in wood construction are commonly designed to resist and carry the lateral load but also subject to withdrawal force like uplift load due to the wind. This research was conducted to evaluate the performance of nailed joint composed of dimension lumber and sheathing materials through the nail withdrawal and unsymmetric double shear joint test, and then compared to current design values. The withdrawal strength was greatly dependant on wood specific gravity, and the withdrawal strength of I-joist with OSB showed higher value in spite of low specific gravity. The maximum withdrawal loads were greater than that of derived current design values about 5 times. The lateral resistance of Japanese larch/OSB nailed joints was higher than that of SPF/OSB nailed joint, and derived allowable lateral strength of nailed joints in this study exceeded the current design values. The failure mode of nailed joints was primarily due to the nail bending and this tendency was notable in SPF/OSB nailed joint.