• Title/Summary/Keyword: Shear Angle

Search Result 1,310, Processing Time 0.028 seconds

Push-out Test on Welded Angle Shear Connectors used in Composite Beams (합성보에 적용된 앵글 전단연결재의 Push-out 실험)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Jang, Dong Woon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.155-167
    • /
    • 2014
  • Steel-concrete composite beam has been used for a considerable time in building construction. An essential component of a composite beam is the shear connection between the steel section and the concrete slabs, which is provided by mechanical shear connectors. A variety of shapes and devices have been in use as shear connectors. This study summarizes the results of an experimental investigation involving the testing of push-out specimens with angle shear connectors. All of 22 push-out specimens were designed to study the effect of a number of parameters on the shear capacity of angle shear connectors such as the height of the angle connector, the length of welding, and the pitch of angles. Based on the test results, a design equation was developed for predicting the shear strength of angle shear connectors.

Behavior of steel-concrete composite beam using angle shear connectors at fire condition

  • Davoodnabi, Seyed Mehdi;Mirhosseini, Seyed Mohammad;Shariati, Mahdi
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.141-147
    • /
    • 2019
  • Fire is one of the environmental parameters affecting the structure causing element internal forces to change, as well as reducing the strength of the materials. One of the common types of floors in tall steel structures is the steel concrete composite slab. Shear connectors are used in steel and concrete composite beam in various shapes also has played significant role in a burning fire event of building with a steel concrete composite beam. The current study has reviewed the effects of temperature raising on the angle connector behavior through the use of push out tests and monotonic static force. The results have shown (1) the ductility of the samples is acceptable based on EC4 standard; (2) temperature raising has reduced the stiffness; (3) the shear ductility increment; and (4) the shear capacity reduction. Also, the amount of angle shear connector resistance has been decreased from 18.5% to 41% at ambient temperature up to $850^{\circ}C$.

A Study on the Cutting Mechanism and Energy with Saw-toothed Chip (톱니형Chip의 절삭기구와 Energy에 관한 연구)

  • Kim, Hang-Young;Oh, Seok-Hyung;Seo, Nam-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.3
    • /
    • pp.44-51
    • /
    • 1987
  • In metal cutting various types of chips are produced in consequence of cutting conditions. Flow-type chips have been studied in most cases because they are easier to be analyzed, but the actual surfaces of chips are not smooth, but crushed. This paper deals with saw-toothed chips, special types of flow-type chips, which have deep concaves and high convexes and sharp angles on the free surface. I tried to establish the theory of saw-toothed chip mechanism through experimental observation, that is, the mathmatical model of the cutting energy and cutting mechanism through the geometrical observation of the chips by using a microscope. The results obtained are as follows: 1. The mechanism of saw-toothed chips is diffenent from that of general flow-chips. 2. In the case of saw-toothed chips, the shear angle must be measured by the hypotenuse angle and the rake angle, and the shear angle is more affected by the rake angle than by the hypotenbuse angle. 3. The friction angle is represented by .beta. = . pi. /4+ .alpha./ sub n/- .phi. which is different from Merchant's equation. 4. The pitch and the slip are greatly influenced by depth of cut, but the influence of the rake angle on it is small. 5. The normal stress and the shear stress on the shear plane decrease with the increase of the cutting depth, and they are almost independent on the variation of a rake angle. 6. The unit friction energy on the tool face, the unit shear energy on the shear plane, and the total cutting energy per unit volume decrease with the increase of rake angle and cutting depth.

  • PDF

Block Shear Rupture and Shear Lag of Single angle in Tension Joint -Single angle with three or four bolt connection- (단일 ㄱ형강의 블록전단 파단 및 전단지체 현상 -고력볼트 3개 또는 4개로 접합된 단일 ㄱ형강-)

  • Lee, Hyang Ha;Shim, Hyun Ju;Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.565-574
    • /
    • 2004
  • The purpose of this paper was to investigate the block shear and the fracture in the net section, according to AISC Specifications, by analysing the shear lag effect in the block shear rupture of the single angle with three or four bolt connection. Specimen with three or four bolt connections showed that failure generally went from block shear with some net section failures to classic net section failures. From the test results, showed that the connection length, the thickness of angle, and reduction factor, which affect the block shear rupture, were investigated. According to the test results, it is suggested that the calculation of the net section rupture capacity by using the reduction factor of U, that was suggested by Kulak, is needed.

Study on Atomization Characteristics of Shear Coaxial Injectors (전단동축형 분사기들의 미립화 특성에 대한 연구)

  • Ahn, Jonghyeon;Lee, Keunseok;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Six shear coaxial injectors with different recess length and taper angle were manufactured. Cold-flow tests on the injectors were performed at room temperature and pressure using water and air as simulants. By changing the water mass flow rate and air mass flow rate, spray images were taken under single-injection and bi-injection. Breakup length and spray angle were analyzed from instantaneous and averaged spray images using image processing techniques. For all the injectors, the breakup length generally decreased as the momentum flux ratio increased at the same gas mass flow rate. The injectors with 7.5° taper angle usually had the longest breakup length and the smallest spray angle. When the taper angle was 15° or more, it hardly affected breakup length and spray angle. The recess length did not influence breakup length but its effect on spray angle depended on the taper angle.

Wall Shear Stress Distribution in the Abdominal Aortic Bifurcation : Influence of wall Motion, Impedance Phase Angle, and non-Newtonian fluid (복부대동맥 분기관에서의 벽면전단응력 분포 벽면운동과 임피던스 페이즈 앵글과 비뉴턴유체의 영향)

  • Choi J.H.;Kim C.J.;Lee C.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.261-271
    • /
    • 2000
  • The present study investigated flow dynamics of a two-dimensional abdominal aortic bifurcation model under sinusoidal flow conditions considering wall motion. impedance phase angle(time delay between pressure and flow waveforms), and non-Newtonian fluid using computational fluid dynamics. The wall shear stress showed large variations in the bifurcated region and the wall motion reduced amplitude of wall shear stress significantly. As the impedance phase angle was changed to more negative values, the mean wall shear stress (time-averaged) decreased while the amplitude (oscillatory) of wall shear stress increased. At the curvature site on the outer wall where the mean wall shear stress approached zero. influence of the phase angle was relatively large. The mean wall shear stress decreased by $50\%$ in the $-90^{\circ}$ phase angle (flow wave advanced pressure wave by a quarter period) compared to the $0^{\circ}$ phase angle while the amplitude of wall shear stress increased by $15\%$. Therefore, hypertensive patients who tend to have large negative phase angles become more vulnerable to atherosclerosis according to the low and oscillatory shear stress theory because of the reduced mean and the increased oscillatory wall shear stresses. Non-Newtonian characteristics of fluid substantially increased the mean wall shear stress resulting in a less vulnerable state to atherosclerosis.

  • PDF

Elasto-plastic Joint Finite Element Analysis of Root-pile Using the Direct Shear Test Model (직접전단시험모델에 의한 뿌리말뚝의 탄소성조인트 유한요소해석)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.4
    • /
    • pp.19-30
    • /
    • 2002
  • The stability of slope using root-pile like to the reinforcements is affected by the interaction behavior mechanism of soil-reinforcements. Through the studying on the interaction in joint of its, therefore, the control roles can be find out in installed slope. In study, the stress level ratio based on the insert angle of installed reinforcements in soil used to numerical analysis, which was results from the duty direct shear test in Lab. The maximum shear strain variation on the reinforcements was observed at insert angle, which was approximately similar to the calculated angle based on the equation proposed by the Jewell. The elasto-plastic joint model on the contact area of soil-reinforcements was presumed, the reinforced soil assumed non-linear elastic model and the reinforcements supposed elastic model, respectively. The finite element analysis of assumed models was performed. The shear strain variation of non-reinforced state obtained by the FEM analysis including elasto-plastic joint elements were shown the rationality of general limit equilibrium analysis for the slope failure mode on driving zone and resistance zone, which based on the stress level step according to failure ratio. Through the variation of shear strain for the variation of inserting angle of reinforcements, the different mechanism on the bending and the shear resistance of reinforcements was shown fair possibility.

Shear Angle Variation Depending on Chip-Tool Friction in Orthogonal Cutting (二次元 切削時 칩-工具 마찰상태에 따른 剪斷角 변화)

  • 이영문;송지복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.252-261
    • /
    • 1988
  • Through the careful interpretation of the results of the cutting tests carried out in this study, it is found that under the cutting conditions when the internal shear of the chips take place the cutting can be treated essentially as a steady state problem. A new shear angle equation has been developed employing the conditions of force and moment equilibrium about the tool edge and the stress distribution model suggested by Zorev.The equation contains the chip-tool contact length C and stress distribution index n as important parameters.

Experimental Study on Reinforcement Effectives of Soil Shear Strength by Bamboo(Substitute Materials Simulating a Root System) -Analysis caused by Simple Shear Test under Soil Suction Control- (대나무(대체근계)의 토질강도보강효과에 대한 실험적 연구 -토양수분제어하의 단순전단시험에 의한 해석-)

  • Lee, Chang-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.2
    • /
    • pp.46-51
    • /
    • 2004
  • In this paper, reinforcement of soil shear strength by bamboo(substitute materials simulating a root system) are evaluated by soil strength parameters(apparent cohesion(c) and internal friction angle(tan${\Phi}$)), using simple shear tester which clearly depicts shear deformation and controls soil suction. The results show that the internal friction angle does not change under various soil suction conditions but the apparent cohesion, which reach a peak in suction of 45cm$H_2O$ near critical capillary head, is effected by soil suction. And the reinforcement of soil strength by bamboo are expressed by apparent cohesion more than internal friction angle. In addition the increment of apparent cohesion by bamboo reached a peak in suction 45cm$H_2O$ too.

A Study on the Machinability of Titanium (티타니움의 절삭성에 관한 연구)

  • Cheong, Seong-Gyu;Oh, Seok-Hyung;Seo, Nam-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.2
    • /
    • pp.40-46
    • /
    • 1989
  • Recently, the researches on cutting the new material have been done for development of aerospace industrial engineering. Especially, titanium ally is well known as heat resisting, antiwear, anticorrosion and difficult-to-machine materials. Many studies on the analysis of shear angle have been done for improving productivity in cutting these materials. In case of titanium alloy, the saw-toothed type of chip which has wave surface of a triangular form, an eccentric from of a continuous type of chip that is produced in the cutting process, was checked. Nakayama supposed that a maximum shear strewss plane and the shear crack in the free surface made an angle of $45^{\circ}$ .deg. , but it's usually much larger than that. In this paper, the author analyzed the shear conditions of the cutting process in the quick-stopping device with the help SEM-photographs, and measured the hypotenuse angle directly in the photographs of the chips. In conclusion, the author tried to find the shear angle in the cutting process with the saw-toothed chip and compared it with the shear angles which can be calculated from the theories established by others. The results obtained are as follows. 1. In case of the saw-toothed chips, the equivalent cutting ratio can be calculated by using the chip thickness to two-thirds of ramp height. 2. The theory of Ernst-Merchant is not applicable to the titanium and its alloys which does not fractured in accordance with the theory of maximum shear stress. 3. When we cut the titanium alloys which produced the saw-toothed chips, the shear angle can be found with the theories of Rowe-Spick, P.K. Wright and the measurement of hypotenuse angle.

  • PDF