• Title/Summary/Keyword: Shatter-resistance

Search Result 5, Processing Time 0.018 seconds

Separation Characteristic of Shatter Resistant Sesame After Threshing

  • Noh, Hyun Kwon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.299-303
    • /
    • 2014
  • Purpose: This study set out to develop a machine for separating shatter-resistant sesame after threshing. Methods: Three grades of sieve and different blower speeds were tested for a separation system that had been designed specifically for shatter-resistant sesame. Performance tests were run to evaluate the sieve and blower systems in terms of the sesame separation and loss ratios. Results: Tests of the first separation stage using the sieve system revealed the optimum sieve perforation size to be 5 mm. Tests of the second separation stage using the blower system identified the optimum blower speed as being 220 rpm. The optimum separation and loss ratios, of 96.5% and 3.5%, respectively, were obtained at a blower speed of 220 rpm. Conclusions: These results will be useful for the design, construction, and operation of threshing harvesters. For shatter-resistant sesame, an optimum blower speed of 220 rpm was identified.

EFFECTS OF FIELD PRODUCTIVITY, VARIETY AND NITROGEN RATE ON THE YIELD, QUALITY AND PHYSICO-CHEMICAL CHARACTERISTICS OF BURLEY TOBACCO (버어리종 잎담배의 수량, 품질 및 이화학성에 미치는 포지비옥도, 품종 및 질소시용량의 영향)

  • Kim, Sang-Beom;Kim, Yong-Kyoo;Han, Chul-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.12 no.2
    • /
    • pp.91-101
    • /
    • 1990
  • A field experiment was conducted to find out the effects of field productivity, variety and nitrogen rate on the yield, quality, chemical constituents and physical properties of burley cured leaf in three field with different productivity(Degree of field productivity: A ; high, B ; medium, C : low) during successive two years(1988~89). The yield and quality were remarkably lowered when nitrogen fertilizer being applied much in low productive field. As compared with Burley 21, KB101 showed high yield, particularly the yield of KB101 in low productive field was relatively high. The effect of nitrogen rate on the yield was somewhat different according to field productivity and production year. When the nitrogen fertilizer being applied above 22.5kg/10a, the added nitrogen had no effect on the yield. Total nitrogen content of cured leaf grown in low productive field was high while total alkaloid was low, therefore total alkaloid/total nitrogen ratio was remarkably low. The lightness, red and yellow color of cured leaf grown in low productive field was remarkably low. As compared with Burley 21, the contents of total alkaloid and total nitrogen and shatter resistance index of cured leaf was somewhat low, while the filling power, lightness, red and yellow color were slightly high. Total nitrogen content of cured leaf was increased remarkably by nitrogen addition, but total alkaloid was not increased though the nitrogen fertilizer being applied above 22.5kg/10a. The filling power and shatter resistance index of cured leaf grown in high nitrogen plot, and the lightness and yellow color were low while the red color was relatively high. It comes into question that the visual quality being increased as well as increment of yield and nitrogenous compounds by nitrogen addition in high productive field. In low productive field, it is considerable that nitrogen addition for high yield should be prohibited because it causes the decrement of yield and quality, on the contrary.

  • PDF

The Change of Physical and Chemical Properties of Processed Leaf Tobacco During Long-term Storage (장기저장시 가공 원료잎담배의 이화학성 변화)

  • 김상범;안동명;이종철;이경구;조수헌
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.23 no.1
    • /
    • pp.31-39
    • /
    • 2001
  • This study was carried out to investigate the changes of physical and chemical properties and the usability of long-term stored leaf tobacco. The physical chemical properties of the flue-cured and burley leaves produced in 1993, processed in 1994 were analysed from Nov. 1996 to Nov. 1999. The pH and moisture content in leaf decreased slowly until 4 years’storage after processing, while those of leaf changed little thereafter. However, total sugar content continuously decreased until 5 years after processing. The filling capacity increased and shatter resistance index decreased in long-term stored leaf. The sensory test, cilia stasis and the chemical components of cigarette smoke had no significant differences between short and long-term stored leaves. When the processed leaves were stored till 5 years after processing, there were no deteriorative effects on quality and usability of leaf tobacco. Therefore, it is considered that the processed leaf may be stored for 5 years or more under the inevitable situation.

  • PDF

Influences of Nitrogen and Potassium Rates on the Chemical and Physical Properties of Cured Leaf on Burley Tobacco (질소 및 가리 시용량이 버어리종 잎담배의 성분 및 물리성에 미치는 영향)

  • 김상범
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 1991
  • A field experiment was conducted to find out the effects of nitrogen and potassium rates on the chemical constituents and physical properties of burley tobacco (1988; Burley 21. 1989; Burley 21 and KB 101) during successive two years. KB 101 was low in total nitrogen and total alkaloid contents and potassium/total nitrogen ratio of cured leaf. but high in the lightness, red and yellow color and filling power, comparing to Burley 21. The increasing rates of total nitrogen and total alkaloid contents were larger when nitrogen applied to 22.75kg/10a, but they were smaller when nitrogen applied above 22.75 kg/l0a. The potassium content, potassium/total nitrogen ratio, filling power and shatter resistance index of cured leaf were decreased by nitrogen fertilizer addition. The potassium content and shatter resistance index were increased by potassium fertilizer addition. The effect of nitrogen rate on the potassium/total nitrogen ratio of cured leaf was larger than the effect of potassium rate. When the nitrogen fertilizer being applied above 22.75 kg/l0a, there were no advantageous effects on the chemical and physical properties. It is considered to be sufficient that the potassium application is about 35.0 kg/l0a.

  • PDF

Genetic Analysis of Pod Dehiscence in Soybean

  • Kang Sung Taeg;Kim Hyeun Kyeung;Baek In Youl;Chung Moung Gun;Han Won Young;Shin Doo Chull;Lee Suk-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.281-285
    • /
    • 2005
  • Pod dehiscence (PD), defined as the opening of pods along both the dorsal and ventral sutures, causes the seed to shatter in the field before harvesting and results in loss of seed yields. However, breeding for resistance to PD is difficult due to the complicated genetic behavior and environmental interaction. The objective of the present research was to analyze the genetic behavior of PD for improving the breeding efficiency of resistance to PD in soybean. PD after oven-drying the sampled pod at $40^{\circ}C$ for 24 hours was the most reliable to predict the degree of PD tested in the field. Keunolkong, a dehiscent parent, was crossed with non-dehiscent parents, Sinpaldalkong and Iksan 10. Using their $F_1\;and\;F_2$ seeds, PD was measured after oven drying the pod at $40^{\circ}C$ for 24 hours. The gene conferring PD behaved in different manners depending on the genetic populations. In the Keunolkong$\times$Sinpaldalkong population, PD seemed to be governed by single major recessive gene and minor genes, while several genes were probably involved in the resistance to pod dehiscence in the Keunolkong$\times$Iksan 10 population. Heritability for PD estimated in F2 population showed over $90\%$ in the two populations. High heritability of PD indicated that selection for resistance to PD should be effective in a breeding program. In addition, genetic mapping of quantitative locus (QTL) for PD in both populations may reveal that genes conferring PD are population-specific.