• Title/Summary/Keyword: Shape-similarity

Search Result 419, Processing Time 0.025 seconds

Key VOP by Shape in MPEG-4 Compressed Domain (MPEG-4 압축 영역에서 형상을 이용한 키 VOP 선정)

  • 한상진;김용철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6C
    • /
    • pp.624-633
    • /
    • 2003
  • We propose a novel method of selecting key VOPs from MPEG-4 compressed domain without fully decoding the compressed data. Approximated shapes of VOPs are obtained from the shape coding mode and then VOPs are clustered by shape similarity to generate key VOPs. The proposed method reduces the computation time of shape approximation, compared with Erol's method. Nevertheless, the resulting VOPs have a good summarizing capability of a video sequence. NMHD (normalized mean Hausdorff distance) values are 2-means clustered to generate key VOPs. In the video search, the MHD of a query VOP from key VOPs are computed and the VOP with the lowest distance is returned. Tests on standard MPEG-4 test sequences show that the computational complexity is very low. Recursive clustering proved to be very effective for generating suitable key VOPs.

A Study on Optimal Site Selection for the Artificial Recharge System Installation Using TOPSIS Algorithm

  • Lee, Jae One;Seo, Minho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.161-169
    • /
    • 2016
  • This paper is intended to propose a novel approach to select an optimal site for a small-scaled artificial recharge system installation using TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) with geospatial data. TOPSIS is a MCDM (Multi-Criteria Decision Making) method to choose the preferred one of derived alternatives by calculating the relative closeness to an ideal solution. For applying TOPSIS, in the first, the topographic shape representing optimal recovery efficiency is defined based on a hydraulic model experiment, and then an appropriate surface slope is determined for the security of a self-purification capability with DEM (Digital Elevation Model). In the second phase, the candidate areas are extracted from an alluvial map through a morphology operation, because local alluvium with a lengthy and narrow shape could be satisfied with a primary condition for the optimal site. Thirdly, a shape file over all candidate areas was generated and criteria and their values were assigned according to hydrogeologic attributes. Finally, TOPSIS algorithm was applied to a shape file to place the order preference of candidate sites.

The Brand Image Retrieval System Based on Color and Shape (컬러와 형태에 기반을 둔 상표 영상 검색 시스템)

  • Shin, Seong-Yoon;Pyo, Seong-Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.167-172
    • /
    • 2006
  • An image retrieval system retrieves and offers same of similar image based on various features of image. This paper present a brand image retrieval system based on color and shape of image. We use the image for a color information by dividing into the area and extracting the area color distribution histogram. We use for the shape information by preprocessing of the boundary extraction, the centroid extraction, angular sampling etc. and calculating of the sum of the distance from the centroid to the boundary, the standard deviation, and the rate of long axis to short axis. We accomplish the retrieval through a similarity measurement by using the color and shape information which is extracted in this way.

  • PDF

Similar Satellite Image Search using SIFT (SIFT를 이용한 유사 위성 영상 검색)

  • Kim, Jung-Bum;Chung, Chin-Wan;Kim, Deok-Hwan;Kim, Sang-Hee;Lee, Seok-Lyong
    • Journal of KIISE:Databases
    • /
    • v.35 no.5
    • /
    • pp.379-390
    • /
    • 2008
  • Due to the increase of the amount of image data, the demand for searching similar images is continuously increasing. Therefore, many researches about the content-based image retrieval (CBIR) are conducted to search similar images effectively. In CBIR, it uses image contents such as color, shape, and texture for more effective retrieval. However, when we apply CBIR to satellite images which are complex and pose the difficulty in using color information, we can have trouble to get a good retrieval result. Since it is difficult to use color information of satellite images, we need image segmentation to use shape information by separating the shape of an object in a satellite image. However, because satellite images are complex, image segmentation is hard and poor image segmentation results in poor retrieval results. In this paper, we propose a new approach to search similar images without image segmentation for satellite images. To do a similarity search without image segmentation, we define a similarity of an image by considering SIFT keypoint descriptors which doesn't require image segmentation. Experimental results show that the proposed approach more effectively searches similar satellite images which are complex and pose the difficulty in using color information.

Shape Retrieval using Curvature-based Morphological Graphs (굴곡 기반 형태 그래프를 이용한 모양 검색)

  • Bang, Nan-Hyo;Um, Ky-Hyun
    • Journal of KIISE:Databases
    • /
    • v.32 no.5
    • /
    • pp.498-508
    • /
    • 2005
  • A shape data is used one oi most important feature for image retrieval as data to reflect meaning of image. Especially, structural feature of shape is widely studied because it represents primitive properties of shape and relation information between basic units well. However, most structural features of shape have the problem that it is not able to guarantee an efficient search time because the features are expressed as graph or tree. In order to solve this problem, we generate curvature-based morphological graph, End design key to cluster shapes from this graph. Proposed this graph have contour features and morphological features of a shape. Shape retrieval is accomplished by stages. We reduce a search space through clustering, and determine total similarity value through pattern matching of external curvature. Various experiments show that our approach reduces computational complexity and retrieval cost.

Extraction of Optimal Interest Points for Shape-based Image Classification (모양 기반 이미지 분류를 위한 최적의 우세점 추출)

  • 조성택;엄기현
    • Journal of KIISE:Databases
    • /
    • v.30 no.4
    • /
    • pp.362-371
    • /
    • 2003
  • In this paper, we propose an optimal interest point extraction method to support shape-base image classification and indexing for image database by applying a dynamic threshold that reflects the characteristics of the shape contour. The threshold is determined dynamically by comparing the contour length ratio of the original shape and the approximated polygon while the algorithm is running. Because our algorithm considers the characteristics of the shape contour, it can minimize the number of interest points. For n points of the contour, the proposed algorithm has O(nlogn) computational cost on an average to extract the number of m optimal interest points. Experiments were performed on the 70 synthetic shapes of 7 different contour types and 1100 fish shapes. It shows the average optimization ratio up to 0.92 and has 14% improvement, compared to the fixed threshold method. The shape features extracted from our proposed method can be used for shape-based image classification, indexing, and similarity search via normalization.

SIFT based Image Similarity Search using an Edge Image Pyramid and an Interesting Region Detection (윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색)

  • Yu, Seung-Hoon;Kim, Deok-Hwan;Lee, Seok-Lyong;Chung, Chin-Wan;Kim, Sang-Hee
    • Journal of KIISE:Databases
    • /
    • v.35 no.4
    • /
    • pp.345-355
    • /
    • 2008
  • SIFT is popularly used in computer vision application such as object recognition, motion tracking, and 3D reconstruction among various shape descriptors. However, it is not easy to apply SIFT into the image similarity search as it is since it uses many high dimensional keypoint vectors. In this paper, we present a SIFT based image similarity search method using an edge image pyramid and an interesting region detection. The proposed method extracts keypoints, which is invariant to contrast, scale, and rotation of image, by using the edge image pyramid and removes many unnecessary keypoints from the image by using the hough transform. The proposed hough transform can detect objects of ellipse type so that it can be used to find interesting regions. Experimental results demonstrate that the retrieval performance of the proposed method is about 20% better than that of traditional SIFT in average recall.

Learning Similarity between Hand-posture and Structure for View-invariant Hand-posture Recognition (관측 시점에 강인한 손 모양 인식을 위한 손 모양과 손 구조 사이의 학습 기반 유사도 결정 방법)

  • Jang Hyo-Young;Jung Jin-Woo;Bien Zeung-Nam
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.271-274
    • /
    • 2006
  • This paper deals with a similarity decision method between the shape of hand-postures and their structures to improve performance of the vision-based hand-posture recognition system. Hand-posture recognition by vision sensors has difficulties since the human hand is an object with high degrees of freedom, and hence grabbed images present complex self-occlusion effects and, even for one hand-posture, various appearances according to viewing directions. Therefore many approaches limit the relative angle between cameras and hands or use multiple cameras. The former approach, however, restricts user's operation area. The latter requires additional considerations on the way of merging the results from each camera image to get the final recognition result. To recognize hand-postures, we use both of appearance and structural features and decide the similarity between the two types of features by learning.

Reproduction of 3D Virtual Wear of Sleeve-expanded Power Shoulder Jacket (소매확장 파워숄더 재킷의 3D 가상착의 재현)

  • Jeongah Park;Jeongran Lee
    • Fashion & Textile Research Journal
    • /
    • v.25 no.5
    • /
    • pp.593-602
    • /
    • 2023
  • This study aimed to facilitate the use of virtual technologies such as sewing, appearance, and material expression in 3D virtual wear programs. For product production and education, we expounded how to express the shoulder shape and silhouette of sleeve-expanded power shoulder jackets. Two designs of sleeve-expanded power shoulder jackets were selected, and virtual jackets were produced using a virtual avatar based on the body dimensions of female subjects in their 20s. The essential purpose of a 3D virtual power shoulder jacket is to express the shoulder angle rise and shoulder width, which are much wider than the avatar's shoulder. Therefore, the virtual pad values were adjusted for the collision and rendering of each thickness. In addition, the position and angle of the virtual pads were controlled through simulation. Appearance similarity was evaluated using photographic data and the virtual jackets. For the set-in sleeve virtual power shoulder jacket, the wrinkle expressions of the torso and sleeve were rated as moderate, and material expression was slightly insufficient. The similarity of some ease and width items of the torso was tightly expressed, and the overall appearance, positions of lines, and details of jackets were rated high, especially at the neck and sleeve shapes. In the case of the kimono virtual power shoulder jacket, the expressions of the torso wrinkles and buttons were slightly lower; however, the overall similarity, basic lines, ease, shoulder and neck details, and material expression of the virtual jackets were highly evaluated.

A Real-Time Head Tracking Algorithm Using Mean-Shift Color Convergence and Shape Based Refinement (Mean-Shift의 색 수렴성과 모양 기반의 재조정을 이용한 실시간 머리 추적 알고리즘)

  • Jeong Dong-Gil;Kang Dong-Goo;Yang Yu Kyung;Ra Jong Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, we propose a two-stage head tracking algorithm adequate for real-time active camera system having pan-tilt-zoom functions. In the color convergence stage, we first assume that the shape of a head is an ellipse and its model color histogram is acquired in advance. Then, the min-shift method is applied to roughly estimate a target position by examining the histogram similarity of the model and a candidate ellipse. To reflect the temporal change of object color and enhance the reliability of mean-shift based tracking, the target histogram obtained in the previous frame is considered to update the model histogram. In the updating process, to alleviate error-accumulation due to outliers in the target ellipse of the previous frame, the target histogram in the previous frame is obtained within an ellipse adaptively shrunken on the basis of the model histogram. In addition, to enhance tracking reliability further, we set the initial position closer to the true position by compensating the global motion, which is rapidly estimated on the basis of two 1-D projection datasets. In the subsequent stage, we refine the position and size of the ellipse obtained in the first stage by using shape information. Here, we define a robust shape-similarity function based on the gradient direction. Extensive experimental results proved that the proposed algorithm performs head hacking well, even when a person moves fast, the head size changes drastically, or the background has many clusters and distracting colors. Also, the propose algorithm can perform tracking with the processing speed of about 30 fps on a standard PC.