• 제목/요약/키워드: Shape of the Entrance

검색결과 163건 처리시간 0.026초

평행류 열교환기의 헤더내 열유동 해석 (Thermal and Flow Analysis inside the Header of a Parallel Flow Heat Exchanger)

  • 이관수;오석진
    • 설비공학논문집
    • /
    • 제12권9호
    • /
    • pp.802-809
    • /
    • 2000
  • This study numerically analyzes the thermal and flow characteristics inside the header in PFHE(parallel-flow heat exchanger) by employing a three-dimensional turbulence modeling. The following quantities are examined by varying the injection angle of the working fluid, the location of entrance and the shape of entrance: flow nonuniformity, heat transfer rate, and flow distribution in each passage. The result shows that the degree of significance among the parameters affecting the header part is in the order of the injection angle, the shape of entrance, and the location of entrance. The result also indicates that heat transfer rates compared to the reference model are increased by about 152% for the angle of injection of -$20^{\circ}C$, by about 127% for the shape of entrance with right and left long rectangular form, and by about 108% for the location of entrance located at the lowest Position.

  • PDF

공동주택 아파트 진입부 경관특성 연구 - 수도권 '살기좋은 아파트 수상'단지를 중심으로 - (Analysis on Landscape Characteristic of Entrance Spaces in the Apartment Complex - A case study of 'Award of Good Apartment to Living' in the Capital Region -)

  • 이경진;이기우
    • KIEAE Journal
    • /
    • 제8권6호
    • /
    • pp.47-55
    • /
    • 2008
  • The purpose of this study is as follows. 1) An element to organize the landscape of an apartment entrance space and setting up, a characteristic of landscape through the actual condition analysis. 2) The characteristic of the type analysis and classified the shape of the entrance as the type. 3) The degree to like the landscape analysis through the making up question. The result of this research is as follows. The entrance of the apartment complex of 71 as of 92 and set an element to organize the landscape and the characteristic of landscape through the frequency analysis and divided an entrance landscape of apartment into 4 types through the cluster analysis. An entrance landscape of apartment types of the entrance is classified as follows. 1) Type I: A model wall-fence type, 2) Type II: The side constructing a building-fence type, 3) type III: The side constructing a building-retaining wall-mixing tree type, 4) type IV: The moulding constructing a building-a retaining wall type.

입구후드가 고속철도 터널입구의 압축파에 미치는 영향 (Effect of Tunnel Entrance Hood on Entry Compression Wave)

  • 김희동;김태호;김동형
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.58-68
    • /
    • 1999
  • The entry compression wave, which forms at the entrance of a high-speed railway tunnel, is closely related to the pressure transients in the train/tunnel systems as well as an impulsive noise appearing at the exit of the tunnel. In order to alleviate such undesirable phenomena, some control strategies have been applied to the compression wave propagating inside the tunnel. The objective of the current work is to investigate the effect of tunnel entrance hoods on the entry compression wave at the vicinity of the tunnel entrance. Three types of entrance hoods were tested by the numerical method using the characteristics of method for a wide range of train speeds. The results show that the maximum pressure gradient of compression wave can be considerably reduced by the tunnel entrance hood. Optimum hood shape necessary to reduce the pressure transients and impulsive noise was found to be of an abrupt type hood with its cross-sectional area 2.5 times the tunnel area. It is believed that the current results are highly useful in predicting the effects of entrance hoods and in choosing the shape of proper hood.

유입부 비대칭 노즐의 성능연구 (Performance Study of Supersonic Nozzle with Asymmetric Entrance Shape)

  • 이지형;김중근;이도형
    • 한국추진공학회지
    • /
    • 제10권2호
    • /
    • pp.46-52
    • /
    • 2006
  • 현재까지 적용되고 있는 추력제어 장치로는 크게 노즐의 확대부에 장착되어 화염의 방향을 조종하는 제트베인(jet vane), 제트탭(jet tab)방식과 노즐자체를 회전하는 방식인 볼/소켓형(ball & socket) 노즐, 플렉시블 씰형 (flexible seal)노즐로 구분된다. 본 연구는 노즐자체를 회전하여 추력방향을 제어하는 볼/소켓형(ball & socket) 노즐이 회전할 경우 발생되는 유입부의 비대칭성이 노즐 성능에 미치는 영향을 예측하기 위하여 수행한 3차원 수치해석결과와 공압시험 결과를 수록하였다. 유동해석 결과 유입부의 비대칭성이 유동에 미치는 영향은 노즐 목을 지나면서 현저히 줄어들고 하류 유동에 미치는 영향이 미비하였으며 해석된 주 추력의 크기는 시험에서 측정된 추력과 비슷한 경향을 나타내었으나 측 추력의 경우 시험 값보다 낮게 나타났다. 또한 시험의 결과 기하학적으로 회전된 회전각에 의한 추력방향과 측정된 추력의 방향이 일치하지 않음을 알 수 있었다.

고속철도의 터널입구 형상변황에 따른 압력파동 현상에 관한 수치적 연구 (Numerical Study on the Effects of Pressure Wave Propagation for Tunnel Entrance Shape Change in High-Speed Railways)

  • 목재균;백남욱;유재석;최윤호
    • 한국자동차공학회논문집
    • /
    • 제5권2호
    • /
    • pp.50-59
    • /
    • 1997
  • When a front head of train enters a tunnel at a high speed, compression wave is generated at tunnel entrance due to the confinement effect and propagated along the tunnel with sound of speed. The propagated compression wave is reflected at tunnel exit due to abrupt pressure change at passage. The reflected wave is expansion pressure wave. And when the rear head of train goes through the tunnel entrance, another expansion pressure wave is generated and propagated along the tunnel. The pressure drop occurs seriously around train when the two expansion pressure waves come cross on train in the tunnel. In order to reduce the pressure drop, the compression wave front must be controlled because the intensity and magnitude of pressure drop is nearly proportional to that of compression wave at tunnel entrance. This study relates to reduction of the pressure wave gradient with respect to tunnel entrance shape change with various kind of angle and rounding. The results show characteristics of wave propagation in tunnel, usefulness of characteristic curve to estimate proper time domain size in numerical study and measuring time in actual experiment. Also rounding is contributed to improve pressure wave front even if its radius is very small at tunnel entrance. In order to improve of pressure wave front at tunnel entrance, proper angle is prefered to rounding with big radius and an angle of around 14$^{\circ}$ is recommended according to this simulations, And it is expected to reduce additional pressure drop in tunnel when the location and the size of the internal space for attendant equipment are considered in advance.

  • PDF

각형 출입구를 갖는 방호터널의 방폭밸브에 미치는 폭압 평가 (Blast Overpressure Evaluation for Blast Valves in Protective Tunnels with Rectangular-Shaped Tunnel Entrances)

  • 방승기;신진원
    • 한국지열·수열에너지학회논문집
    • /
    • 제17권4호
    • /
    • pp.79-90
    • /
    • 2021
  • This paper presents a study to reduce the effect of blast pressure on the blast valves installed in protection tunnels, where the shape of the tunnel entrance and the blast pocket is optimized based on the predetermined basic shape of the protective tunnels. The reliability of the numerical tunnel models was examined by performing analyses of mesh convergence and overpressure stability and with comparison to the data in blast-load design charts in UFC 3-340-02 (DoD, 2008). An optimal mesh size and a stabilized distance of overpressure were proposed, and the numerical results were validated based on the UFC data. A parametric study to reduce the blast overpressures in tunnel was conducted using the validated numerical model. Analysis was performed applying 1) the entrance slope of 90, 75, 60, and 45 degrees, 2) two blast pockets with the depth 0.5, 1.0, and 1.5 times the tunnel width, 3) the three types of curved back walls of the blast pockets, and 4) two types of the upper and lower surfaces of the blast pockets to the reference tunnel model. An optimal solution by combining the analysis results of the tunnel entrance shape, the depth of the blast pockets, and the upper and lower parts of the blast pockets was provided in comparison to the reference tunnel model. The blast overpressures using the proposed tunnel shape have been reduced effectively.

유입부 비대칭 노즐의 성능연구 (Performance Study of Supersonic Nozzle with Asymmetric Entrance Shape)

  • 이지형;김중근;이도형
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.40-45
    • /
    • 2005
  • 현재까지 적용되고 있는 추력제어 장치로는 크게 노즐의 확대부에 장착되어 화염의 방향을 조종하는 제트베인(jet vane), 제트탭(jet tab)방식과 노즐자체를 회전하는 방식인 볼/소켓형(ball & socket) 노즐, 플렉시블 씰형 (flexible seal)노즐로 구분된다. 본 연구는 노즐자체를 회전하여 추력방향을 제어하는 볼/소켓형(ball & socket) 노즐이 회전할 경우 발생되는 유입부의 비대칭성이 노즐 성능에 미치는 영향을 예측하기 위하여 수행한 3차원 수치해석결과와 공압시험 결과를 수록하였다. 유동해석 결과 유입부의 비대칭성이 유동에 미치는 영향은 노즐 목까지 점차적으로 줄어들고 하류 유동에 미치는 영향이 미비하였으며 해석된 주 추력의 크기는 시험에서 측정된 추력과 비슷한 경향을 나타내었으나 측 추력의 경우 시험 값보다 낮게 나타났다.

  • PDF

호텔 진입공간의 구성요소 및 특성에 관한 연구 (A Study on the Components and Characteristics of Hotel Access Space)

  • 이정림;김윤학;조용준
    • 한국주거학회논문집
    • /
    • 제20권4호
    • /
    • pp.1-9
    • /
    • 2009
  • In this study, an examination and an analysis are carried out on the forms and components of the access spaces of hotel entrances from the front gate of five star hotels in Jejudo, Korea. The results of the study are as follows. In terms of the arrangement of the hotel, city hotels with a relatively narrow site area are influenced by site shape, while resort hotels with a relatively wide site area are affected by the environment. However, the location of the front gate was determined by the access road from the outside. Therefore, forms of access space are related to the front gate, which is governed by the access road, and to the entrance, which is determined by the hotel arrangement. If the front gate is in line with the hotel entrance, a straight line and the hotel are arranged vertically to the front gate(side arrangement) or the hotel is arranged horizontally to the front gate, but if the entrance is not in line with the front gate, it appears as a curved shape. However, those who use their own cars have a variety of choices for access route depending on the location of the parking lot.

고속철도 터널입구에서 형성되는 압축파의 특성에 관한 연구 (Characteristics of High-Speed Railway Tunnel Entry Compression Wave)

  • 김희동;김태호;이종수;김동현
    • 대한기계학회논문집B
    • /
    • 제23권2호
    • /
    • pp.234-242
    • /
    • 1999
  • Flow phenomena such as the pressure transients Inside a high-speed railway tunnel and the Impulsive waves at the exit of the tunnel are closely associated with the characteristics of the entry compression wave, which is generated by a train entering the tunnel. Tunnel entrance hood may be an effective means for alleviating the Impulsive waves and pressure transients. The objective of the current work is to explore the effects of the train nose shape and the entrance hood on the characteristics of the entry compression wave. Numerical calculations using the method of characteristics were applied to one-dimensional, unsteady, compressible flow field with respect to high-speed railway/tunnel systems. Two types of the entrance hoods and various train nose shapes were employed to reveal their influences on the entry compression wave for a wide range of train speeds. The results showed that the entry compression wave length increases as the train nose becomes longer and the train speed becomes lower. The entry compression wave length in the tunnel with hood becomes longer than that of no hood. Maximum pressure gradient in the compression wavefront reduces by the entrance hood. The results of the current work provide useful data for the design of tunnel entrance hood.

고속철도 터널 입구후드에 관한 수치해석적 연구 (Numerical Study on High-Speed railway Tunnel Entrance Hood)

  • 김희동;김동현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.604-611
    • /
    • 1998
  • High-speed railway trains entering and leaving tunnels generate finite amplitude pressure wave which propagate back and forth along the tunnels, reflecting at the open ends of the tunnels and at other discontinuities such as ventilation shafts and the train themselves. In present day railways, the magnitudes of the pressure waves are much too small to cause structual damage, but they are a serious potential source of aural discomport for passengers on unsealed trains. Almost always do the pressure waves propagating along the tunnels lead to a hazardous impulse noise near the exit portal of the tunnel. In order to alleviate such undesirable phenomena, some control strategies have been applied to the compression wave propagating inside the tunnel. The objective of the current work is to investigate the effect of tunnel entrance hoods on the entry compression wave at the vicinity of the tunnel entrance. Three types of entrance hoods were tested by the numerical method using the characteristics of method for a wide range of train speeds. The results show that the maximum pressure gradient of compression wave can be considerably reduced by the tunnel entrance hood. Desirable hood shape for reduction of the pressure transients and impulse noise was found to be of abrupt type hood with its cross-sectional area 2.5times the tunnel area.

  • PDF