• Title/Summary/Keyword: Shape ellipticity

Search Result 10, Processing Time 0.021 seconds

Shape Ellipticity Dependence of Exciton Fine Levels and Optical Nonlinearities in CdSe and CdTe Nanocrystal Quantum Dots

  • Yang, Hanyi;Kyhm, Kwangseuk
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.143-149
    • /
    • 2019
  • Shape ellipticity dependence of the exciton fine energy levels in CdTe and CdSe nanocrystal quantum dots were compared theoretically by considering the crystal structure and the Coulomb interaction of an electron and a hole. While quantum dot ellipticity changes from an oblate to prolate quantum dot via spherical shape, both the fine energy levels and the dipole moment in wurtzite structure of a CdSe quantum dot change linearly for ellipticity. In contrast, CdTe quantum dots were found to show a level crossing between the bright and dark exciton states with a significant change of the dipole moment due to the cubic structure. Shape ellipticity dependence of the optical nonlinearities in CdTe and CdSe nanocrystal quantum dots was also calculated by using semiconductor Bloch equations. For a spherical shape quantum dot, only $1^L$ dominates the optical nonlinearities in a CdSe quantum dot, but both $1^U$ and $0^U$ contribute in a CdTe quantum dot. As excitation pulse area becomes strong (${\sim}{\pi}$), the optical nonlinearities of both CdSe and CdTe quantum dots are mainly governed by absorption saturation. However, in the case of a prolate CdTe quantum dot, the real part of the nonlinear refractive index becomes relatively significant.

The Input Characteristics of Elliptic Disk-Loaded Antenna with Ellipticity Ratio (임의의 타원율을 가진 타원형 디스크가 로딩된 모노폴 안테나의 입력 특성)

  • 이재욱;송명선
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.119-122
    • /
    • 2001
  • In this paper, an elliptic disk-loaded antenna having frequency shift characteristics with the same height of the simple monopole is studied. The proposed antenna is composed of an ellitptic disk with arbitrary ellipticity ratio. The eigenmode representations in each region of given structure are useful for the analysis of the canonical monopoly, circular disk-loaded monopole and circular dielectric-loaded top-hat monopole antennas using the artificical ground plane. The comparison between the elliptic and circular disk-leaded antenna is carried out. The effect of the shape of the loaded disk and the ellipticity ratio of the loaded disk on the input impedances, the return loss and frequency shift is also studied. We have computed the given structures using the CST MW Studio version 3.0. The typical blade antenna can be obtained by modifying and extending the proposed structure with the λ/4 balun removing the stray capacitances existing between the loaded disk and the ground plane.

  • PDF

Polarization Ellipticity of Micro-photoluminescence in a Single GaAs/AlGaAs Quantum Ring

  • Kim, Minju;Jang, Juyeong;Lee, Seunghwan;Song, Jindong;Kyhm, Kwangseuk
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.72-76
    • /
    • 2021
  • The polarized micro-photoluminescence spectrum was analyzed to investigate the anisotropic localized states in a single GaAs quantum ring. An energy difference of ~0.1 meV was observed from the perpendicularly polarized spectrum measured by a pair of linear analyzers. Spectral dependence of the polarized emission was also characterized in terms of rotation and ellipticity angles using four Stokes parameters. While the rotation angle indicates the symmetric axis of an anisotropic quantum ring with a small variation (± 2°), the ellipticity angle varies from 7.4° down to -2.5°. We conclude that optical anisotropy and birefringence are induced by the crescent-like lateral shape of localized states.

Roughness and Shape Analysis on Granular Materials (조립토의 거칠기 및 모양 분석)

  • 민덕기;이완진;이종익
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.245-252
    • /
    • 2002
  • The roughness of Joomoonjin sand and the Dongchun river sand was analysed by the fractal theory. It was found that the fractal dimension(D$\_$F/) of Joomoonjin sand is a little smaller than the Dongchun river sand. That means Joomoonjin sand is smoother than the Dongchun river sand. The measurements of D$\_$F/ of different fraction of the Donchun river sand showed that large particles were rougher than fine particles. The shapes of both sands were analysed by the Discrete Fourier Transform(DFT) and the Grid-based(GB) method. Normalization of coefficients with respect to size, starting point and its orientation made the coefficients invaried to these characteristics. The mean of the normalized coefficients was used to reconstruct the average shape for both sands, respectively. The measurements of the ellipticity ratio of different fraction of both sands showed that Joomoonjin sand is slightly flatter than the Dongcun river sand.

  • PDF

The Shape and Virial Theorem of a Star Cluster in the Galactic Tidal Force Field

  • Lee, See-Woo;Rood, Herbert J.
    • Journal of The Korean Astronomical Society
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 1969
  • On the instantaneous tidal relaxation approximation, formulae are derived for the ellipticities and virial theorem of a slightly flattened homogeneous rotating cluster (the largest axis of the cluster is directed towards the Galactic center), in terms of the Galactic tidal force and the characteristic intrinsic plus orbital angular velocity. The expression for a purely tidally-determined ellipticity is identical to that for an incompressible fluid body of uniform density. Orbital motion generally contributes significantly to the shape of the cluster. The virial theorem is identical to that for an isolated cluster except that the gravitational potential energy is multiplied by (1-${\chi}$), where ${\chi}$ is a positive tidal correction term. To obtain the actual mass of a cluster, the virial theorem mass based on an isolated cluster should be multiplied by the factor 1/(1-${\chi}$). The formulae are applied to open star clusters, the globular cluster ${\omega}$ Centauri, and dwarf elliptical galaxies in the Local Group.

  • PDF

IRON LINE PROFILES FROM RELATIVISTIC ELLIPTICAL ACCRETION DISKS

  • CHANG HEON-YOUNG;CHOI CHUL-SUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.3
    • /
    • pp.123-130
    • /
    • 2002
  • An elliptical accretion disk may be formed by tidally disrupted debris of a flying-by star in an active galactic nucleus (AGN) or by tidal perturbation due to a companion in a binary black hole system. We investigate the iron K$\alpha$ line profiles expecting from a geometrically thin, relativistic, elliptical disk in terms of model parameters, and find that a broad and skewed line profile can be reproduced well. Its shape is variable to the model parameters, such as, the emissivity power-law index, the ellipticity of the disk, and the major axis orientation of the elliptical accretion disk. We suggest that our results may be useful to search for such an elliptical disk and consequently the tidal disruption event.

ULTRAVIOLET ISOPHOTE SHAPES OF NEARBY ELLIPTICAL GALAXIES AND SPIRAL BULGES

  • SOHN YOUNG-JONG
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.2
    • /
    • pp.59-66
    • /
    • 2001
  • In this paper, we investigate the correlation between the radial ultraviolet color distribution and the shapes of the ultraviolet isophote for elliptical galaxies (M32, NGC 1399) and spiral bulges (of M31, M81) by using their archival UIT images. For M31, M81, and NGC 1399, the radial ultraviolet color distributions show a two-component trend; as the distance from the galactic center increase the color becomes redder in the inner region while it becomes bluer in the outer region. On the other hand, the color of M32 continues to become bluer with the increasing galactocentric distance. We also find, unlike the optical/IR images, significant variations of the position angle and the ellipticity in the ultraviolet isophotes of M31, M81, and NGC 1399 through the inner regions. For M32, the variation is significant in the outer region. Since these variation implies the triaxiality of their intrinsic shapes, we suggest that the early-type galaxies and spiral bulges with a radial color gradient in ultraviolet tend to have a triaxiality. On the other hand, the shape parameter characterized by the fourth order cosine Fourier coefficient of the isophote, a(4)/a, indicates that the systematic deviations of the ultraviolet isophotes of the four galaxies are smaller than $\~0.2\%$ in units of the semi-major axis. The latter result implies that the ultraviolet isophotes of the galaxies have a pure elliptical shape rather than the boxy or disky shapes. Therefore, there is no clear evidence of correlation between the radial ultra-violet color gradient and the boxy/disky shapes of isophotes.

  • PDF

The Effect of Acidic pH on the Spectral Properties of Bacteriorhodopsin (산성 pH가 박테리오로돕신의 분광학적 성질에 미치는 효과)

  • Quae Chae
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.320-324
    • /
    • 1979
  • Purple membrane from Halobacterium halobium was incorporated into 7.5% polyacrylamide gels. Absorption and circular dichroic spectra of purple membrane incorporated with gels were obtained at various pH. The spectra of these gels measured at pH 7.0 were essentially identical with those obtained in the aqueous suspension of purple membrane. Acid titration of the gels showed the transition to a form absorbing at 605nm $(bR_{605}^{acid}$) at pH 2.6, and to a second form at 565nm $(bR_{565}^{acid})$ at pH 0.8. Dark-adapted gels showed an isosbestic point for each transition whereas light-adapted gels did not. Visible CD spectra of $bR_{570}^{LA},\;bR_{305}^{acid}\;and\;bR_{565}^{acid}$ all showed the typical bilobed pattern. CD spectra measured at UV wavelength region were also independent of the variation of pH in terms of molar ellipticity and spectral shape. The protonated species $bR_{605}^{acid}$ may be one of the intermediates formed during the normal photochemical cycle of purple membrane. Most probably, the species $bR_{605}^{acid}$ is considered to be $O^{640}$ in the cycle.

  • PDF

Unfolding of Ervatamin C in the Presence of Organic Solvents: Sequential Transitions of the Protein in the O-state

  • Sundd, Monica;Kundu, Suman;Dubey, Vikash Kumar;Jagannadham, Medicherla V.
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.586-596
    • /
    • 2004
  • The folding of ervatamin C was investigated in the presence of various fluorinated and non-fluorinated organic solvents. The differences in the unfolding of the protein in the presence of various organic solvents and the stabilities of O-states were interpreted. At pH 2.0, non-fluorinated alkyl alcohols induced a switch from the native $\alpha$-helix to a $\beta$-sheet, contrary to the $\beta$-sheet to $\alpha$-helix conversion observed for many proteins. The magnitude of ellipticity at 215 nm, used as a measure of $\beta$-content, was found to be dependent on the concentration of the alcohol. Under similar conditions of pH, fluorinated alcohol enhanced the intrinsic a-helicity of the protein molecule, whereas the addition of acetonitrile reduced the helical content. Ervatamin C exhibited high stability towards GuHCl induced unfolding in different O-states. Whereas the thermal unfolding of O-states was non-cooperative, contrary to the cooperativity seen in the absence of the organic solvents under similar conditions. Moreover, the differential scanning calorimetry endotherms of the protein acquired at pH 2.0 were deconvoluted into two distinct peaks, suggesting two cooperative transitions. With increase in pH, the shape of the thermogram changed markedly to exhibit a major and a minor transition. The appearance of two distinct peaks in the DSC together with the non-cooperative thermal transition of the protein in O-states indicates that the molecular structure of ervatamin C consists of two domains with different stabilities.

THE VIRIAL RELATION AND INTRINSIC SHAPE OF EARLY-TYPE GALAXIES

  • TRIPPE, SASCHA
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.5
    • /
    • pp.193-198
    • /
    • 2016
  • Early-type galaxies (ETGs) are supposed to follow the virial relation $M=k_e{\sigma}^2R_e/G$, with M being the mass, σ* being the stellar velocity dispersion, Re being the effective radius, G being Newton's constant, and ke being the virial factor, a geometry factor of order unity. Applying this relation to (a) the ATLAS3D sample of Cappellari et al. (2013) and (b) the sample of Saglia et al. (2016) gives ensemble-averaged factors 〈ke〉 = 5.15 ± 0.09 and 〈ke〉 = 4.01 ± 0.18, respectively, with the difference arising from different definitions of effective velocity dispersions. The two datasets reveal a statistically significant tilt of the empirical relation relative to the theoretical virial relation such that $M{\propto}({\sigma}^2_*R_e)^{0.92}$. This tilt disappears when replacing Re with the semi-major axis of the projected half-light ellipse, a. All best-fit scaling relations show zero intrinsic scatter, implying that the mass plane of ETGs is fully determined by the virial relation. Whenever a comparison is possible, my results are consistent with, and confirm, the results by Cappellari et al. (2013). The difference between the relations using either a or Re arises from a known lack of highly elliptical high-mass galaxies; this leads to a scaling (1 - ϵ ) ∝ M0.12, with ϵ being the ellipticity and $R_e=a\sqrt[]{1-{\epsilon}}$. Accordingly, a, not Re, is the correct proxy for the scale radius of ETGs. By geometry, this implies that early-type galaxies are axisymmetric and oblate in general, in agreement with published results from modeling based on kinematics and light distributions.