• Title/Summary/Keyword: Shape Space

Search Result 2,095, Processing Time 0.032 seconds

The Estimation of Temperature distribution around Gas Storage Cavern (저온가스 저장공동 주위암반의 온도분포 예측에 관한 연구)

  • Lee, Yang;Lee, Seung-Do;Moon, Hyun-Koo
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.16-25
    • /
    • 2004
  • As underground caverns have many advantages such as safety and operation, they can also be used for gas storage purpose. When liquefied gas is stored underground, the cryogenic temperature of the gas affects the stability of the storage cavern. In order to store the liquefied gas successfully, it is essential to estimate the exact temperature distribution of the rock mass around the caverns. The main purpose of this study is the development of theoretical solution to be able to estimate the temperature distribution around storage caverns and the assessment of the solution. In this study, a theoretical solution and a conceptual model for estimating two and three dimensional temperature distribution around the storage caverns are suggested. Based on the multi-dimensional transient heat transfer theory, the theoretical solution is successfully derived by assuming the caverns shape as simplified geometry. In order to assess the theoretical solution, by performing numerical experiments with this multi-dimensional model, the temperature distribution of the theoretical solution is compared with that of numerical analysis. Furthermore, the effects of the caverns size are investigated.

Application of Fuzzy Reasoning Method for Prediction of Subsidence Occurrences in Abandoned Mine Area (폐광산 지역에서의 지반침하예측을 위한 퍼지추론기법 적용 연구)

  • Choi, Sung-O.;Kim, Jae-Dong;Choi, Gwang-Su
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.463-472
    • /
    • 2009
  • Many old domestic mines were excavated with the room and pillar method or the sublevel caving method and they involve the great possibility of surface subsidence, especially in the shallow depth mines. In most of these cases, the mine roadways and openings are very irregular in shape and the information about the local geology is uncertain. Consequently it is not simple to standardize the estimation method for the possibility of subsidence, especially the sinkhole subsidence. In this study, the fuzzy reasoning method has been applied for development of estimating the possibility of subsidence occurrence in abandoned mine area. This method has the advantage in producing the reliable estimation results with a simple performance procedure even when the precise information on the local geology and mining conditions is rare. For the verification of applicability of this method, the developed method has been applied to Kumho mine in Bonghwa, Kyungbook province and the Choong-ju mine in Iryu, Choongbook province where the surface subsidence occurred already.

A Study on the Determination of Grout Injection Volume according to the Angle of Mine Cavity (채굴적 경사에 따른 그라우트 주입량 결정에 관한 연구)

  • Lee, Byung-Yoon;Jeon, Seok-Won;Kim, Tae-Hyun;Cho, Jung-Woo;Kim, Kwan-Il;Kim, Tae-Hyok;Kim, Soo-Lo
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.107-122
    • /
    • 2009
  • Insufficient reinforcement for maximizing payability and benefits in mining cavities causes subsidence problems and it threatens residents' lives and properties. So many reinforcement management methods are developed and now various methods are being applied in the field. Among them, a filling method which sends reinforcement materials in the cavities is used extensively. However, domestic geological condition and coal mining methods are so complicate that make many steep cavities. Because of those problems, it is difficult to apply foreign methods directly, which is valid for horizontal cavities. In this study, the injection volume of quick setting grouting material which is developed for filling cavities in domestic condition and the shape of consolidated bodies are investigated. And a programming method for estimating proper injection amounts of filling materials is proposed. The results are verified by numerical analysis using UDEC.

Stability Analysis for Ground Uplift in Underground Storage Caverns for High Pressurized Gas using Hoek-Brown Strength Criterion and Geological Strength Index (GSI) (Hoek-Brown 강도기준식 및 암질강도지수를 이용한 고압 유체 지하저장 공동의 융기에 대한 안정성 평가)

  • Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.289-296
    • /
    • 2014
  • A simple analytical approach for stability assessment of underground storage caverns against ground uplift of overburden rock above the rock caverns for high pressurized fluid such as compressed air energy storage (CAES) and compressed natural gas (CNG) was developed. In the developed approach, we assumed that failure plane of the overburden is straight upward to ground surface, and factor of safety can be calculated from a limit equilibrium analysis in terms of this cylindrical shape failure model. The frictional resisting force on the failure plane was estimated by Hoek-Brown strength criterion which replaces with Mohr-Coulomb criterion such that both intact rock strength and rock mass conditions can be considered in the current approach. We carried out a parametric sensitivity analysis of strength parameters under various rock mass conditions and demonstrated that the factor of safety againt ground uplift was more sensitive to Mohr-Coulomb strength criterion rather than Hoek-Brown criterion.

A Study on Automatic Classification of Characterized Ground Regions on Slopes by a Deep Learning based Image Segmentation (딥러닝 영상처리를 통한 비탈면의 지반 특성화 영역 자동 분류에 관한 연구)

  • Lee, Kyu Beom;Shin, Hyu-Soung;Kim, Seung Hyeon;Ha, Dae Mok;Choi, Isu
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.508-522
    • /
    • 2019
  • Because of the slope failure, not only property damage but also human damage can occur, slope stability analysis should be conducted to predict and reinforce of the slope. This paper, defines the ground areas that can be characterized in terms of slope failure such as Rockmass jointset, Rockmass fault, Soil, Leakage water and Crush zone in sloped images. As a result, it was shown that the deep learning instance segmentation network can be used to recognize and automatically segment the precise shape of the ground region with different characteristics shown in the image. It showed the possibility of supporting the slope mapping work and automatically calculating the ground characteristics information of slopes necessary for decision making such as slope reinforcement.

Analysis of Bird Species Diversity Response to Structural Conditions of Urban Park - Focused on 26 Urban Parks in Cheonan City - (도시공원 구조 및 식생 조건에 따른 조류 종다양성 분석 - 천안시 26개 도시공원을 대상으로 -)

  • Song, Wonkyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.3
    • /
    • pp.65-77
    • /
    • 2015
  • The urban park has important functions as a habitat for wildlife as well as open space of rest and community for people. This study was carried out to find what factors of structure and vegetation of urban parks could affect forest bird species diversity in Cheonan city. The study surveyed bird and vegetation species in 26 urban parks, Cheonan city. A correlation analysis and multiple linear regressions were performed to test whether habitat structure and vegetation were the major correlate with species diversity. The results showed the Dujeong park was the most high bird species diversity (H' = 2.13), and the Dujeong-8 park (H' = 2.02) and the Cheongsa park (H' = 1.73) were considerably higher than the other urban parks. The variables that were strongly correlated with bird species diversity were park area, number of subtree species, canopy of shrub, number of shrub species, shape index, canopy of subtree, canopy of tree, and impervious surface ratio. The regression of bird species diversity against the environmental variables showed that 3 variables of park area, canopy of subtree, and canopy of tree were included in the best model. Model variable selection was broadly similar for the 5 optimal models. It means park area and multi-layer vegetation were the most consistent and significant predictor of bird species diversity, because urban parks were isolated by built-up areas. Especially the subtree coverage that provides shelter and food for forest birds was an important variable. Therefore, to make parks circular-shaped and abundant multi-layer vegetation, which could be a buffer to external disturbances and improve the quality of habitats, may be used to enhance species diversity in creation and management of urban parks.

The Geometric Averaging Technique for Long Bone (긴뼈의 형상 평균화 기법)

  • Kwak Dai-Soon;Lee U-Young;Han Seung-Ho;Choi Kwang-Nam;Kim Tae-Joong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.177-178
    • /
    • 2006
  • Many authors issued the feature-preserving averaging technique according to positioning and scaling process using landmarks, which represent the geometric characteristics of three dimensional surface models. Such a technique should be done by manual procedure, choosing and marking the landmarks on each bone surface before averaging process. In this study, we produced another averaging technique without having to use such manual procedure, and made averaging models from three dimensional surface data that were reconstructed from computerized tomography images of Digital Korean Project. The bone models were subjected to orthogonal coordinator system. These models were transformed to coincide mass center and to align principal axis. Then, bone models were scaled according to average length data of sample bone models on all axis(x, y, z). After establishing voxellar hexahedron space which contain all sample bone models, we counted the number of overlapping for each voxel. We generated the three dimensional average surface by displaying the yokels that have more overlapping number than boundary number. The boundary number was decided when the average volume of each bone equal to the volume of bone that would be averaged. Using this technique, we can make a feature-preserving averaging volume of bones.

  • PDF

An Evaluation by CT scanning of Intracranial Volume after Correction of Craniosynostosis (두개골 조기유합증 환자의 술후 CT Scan을 이용한 두개강내 용적의 평가)

  • Kim, Seok Kwun;Lee, Jang Ho;Han, Jae Jung;Jung, Ki Hwan;Lee, Keun Cheol;Park, Jung Min
    • Archives of Plastic Surgery
    • /
    • v.32 no.1
    • /
    • pp.29-36
    • /
    • 2005
  • Craniosynostosis is the premature fusion of one or more sutures of either cranial vault or base. Fused sutures may impede normal growth of the calvaria, leading to characteristic skull deformities; Morphological craniosynostosis is classified descriptively. Being craniosynostosis uncorrected the deformity progresses continuously and causes an increase of intracranial pressure. The surgical involvement aims at the expansion of intracranial space as well as satisfactory achievement of craniofacial shape. Early surgical correction in infancy prevents the deformity from the further progression and possible associated complication of high intracranial pressure. A long period of follow-up is essential to asses the outcome of an effectiveness of the surgery. measurement of intracranial volume has been concerned in medical personnel and anthropologists for many years. A reliable and accurate measurements of the intracranial volume facilitates to make a diagnosis and treatment of craniosynostosis. Pre-and postoperative change of intracranial volume was evaluated with 3D CT scanning in 12 cases of craniosynostosis who underwent frontal advancement and total cranial vault remodeling. Increased intracranial volume is attributed to surgical release of craniosynostosis and natural growth. We conceive that the intracranial volume is significantly increased after surgical correction of fused cranial sutures and along with natural growing. A procedure of frontal advancement and total cranial vault remodeling is very useful to correct such a deformity as craniosynostosis. And also 2 cases out of five mentally retarded patients improved remarkably and Forehead retrusion or temporal depression followed in another two cases.

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Supported by Hydro Dynamic Bearings and Flexible Supporting Structures In a HDD (유연한 지지 구조와 유체 동압 베어링으로 지지되는 HDD의 회전 유연 디스크-스핀들 시스템에 대한 유한 요소 고유 진동 해석)

  • 한재혁;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.572-578
    • /
    • 2003
  • The free vibration of a spinning flexible disk-spindle system supported by hydro dynamic bearings in a HDD is analyzed by FEM. The spinning flexible disk is described using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. It is discretized by annular sector element. The rotating spindle which includes the clamp, hub, permanent magnet and yoke, is modeled by Timoshenko beam including the gyroscopic effect. The flexible supporting structure with a complex shape which includes stator core, housing, base plate, sleeve and thrust pad is modeled by using a 4-node tetrahedron element with rotational degrees of freedom to satisfy the geometric compatibility. The dynamic coefficients of HDB are calculated from the HDB analysis program, which solves the perturbed Raynolds equation using FEM. Introducing the virtual nodes and the rigid link constraints defined in the center of HDB, beam elements of the shaft are connected to the solid elements of the sleeve and thrust pad through the spring and damper element. The global matrix equation obtained by assembling the finite element equations of each substructure is transformed to the state-space matrix-vector equation, and the associated eigenvalue problem is solved by using the restarted Arnoldi iteration method. The validity of this research is verified by comparing the numerical results of the natural frequencies with the experimental ones. Also the effect of supporting structures to the natural modes of the total HDD system is rigorously analyzed.

  • PDF

Selection of a Fire Detector for Wood Cultural Property (목조문화재 건축물 구조에 따른 화재감지기 종류 선정에 관한 연구)

  • Roh, Sam-Kew;Yoon, Hyoung-Uk
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.88-93
    • /
    • 2016
  • A fire detector installed in wood cultural properties has not have selected the detector type appropriate for the features of cultural properties and the structure of wood fire after the fire in Sungnyemun-Gate since 2008. Applying wooden cultural properties different from the general architecture of the structure and fire characteristics is difficult. Therefore, buildings were classified into four shape types and field survey and wooden architecture structure characteristics to identify the problems of the detectors installed on wooden cultural property buildings. The problems appeared to lack the adaptability to external fire detection sensor selection and missing fire detectors installed in accordance with the place. To solve the problem, the closed and open space of the rooms used a smoke detector, outdoor select flame or fixed temperature linear detector to solve the problem.