• Title/Summary/Keyword: Shape Oscillation

Search Result 113, Processing Time 0.019 seconds

Studies on the Fabrication of 0.2 ${\mu}m$Wide-Head T-Gate PHEMT′s (0.2 ${\mu}m$ Wide-Head T-Gate PHEMT 제작에 관한 연구)

  • Jeon, Byeong-Cheol;Yun, Yong-Sun;Park, Hyeon-Chang;Park, Hyeong-Mu;Lee, Jin-Gu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.1
    • /
    • pp.18-24
    • /
    • 2002
  • n this paper, we have fabricated pseudomorphic high electron mobility transistors (PHEMT) with a 0.2 ${\mu}{\textrm}{m}$ wide-head T-shaped gate using electron beam lithography by a dose split method. To make the T-shape gate with gate length of 0.2 ${\mu}{\textrm}{m}$ and gate head size of 1.3 ${\mu}{\textrm}{m}$ we have used triple layer resist structure of PMMA/P(MMA-MAA)/PMMA. The DC characteristics of PHEMT, which has 0.2 ${\mu}{\textrm}{m}$ of gate length, 80 ${\mu}{\textrm}{m}$ of unit gate width and 4 gate fingers, are drain current density of 323 ㎃/mm and maximum transconductance 232 mS/mm at $V_{gs}$ = -1.2V and $V_{ds}$ = 3V. The RF characteristics of the same device are 2.91㏈ of S21 gain and 11.42㏈ of MAG at 40GHz. The current gain cut-off frequency is 63GHz and maximum oscillation frequency is 150GHz, respectively.ively.

A study on electroreflectance in undoped n-GaAs (불순물이 첨가되지 않은 n-GaAs에서의 Electroreflectance에 관한 연구)

  • 김인수;김근형;손정식;이철욱;배인호;김상기
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.2
    • /
    • pp.136-142
    • /
    • 1997
  • An/n-GaAs(100) Schottky barrier diode has been investigated by using electoreflectance(ER). From the observed Franz-Keldysh oscillatins(FKO), the internal electric field(Ei) of the sample is $5.76\times 10^{4}$V/cm at 300 K. As the modulation voltage($V_{ac}$) IS changed, the line shape of ER signal does not change but its amplitude various linerly. For increasing forward and reverse dc bias boltage($V_{bias}$), the amplitude of ER signal decreases. The internal electric field decreased from $19.3\times 10^4\sim4.39\times10^4$V/cm as $V_{bias}$ INCREASES FROM -5.0 V TO 0.6 V. For Au/n-GaAs the valve of built-in voltage($V_{bi}$) determined from the plot of $V_{bias}$ versus $E_i^2$ is 0.70 V. This value agrees with that observed in the plot of $V_{bias}$ versus amplitude of FKO peak. In addition, the carrier concentraion(N) and potential barrier($\Phi$) of the sample at 300 K are found to be about $2.4\times 10^{16}\textrm{cm}^{-3}$ and 0.78 eV, respectively.

  • PDF

Regional Sea Level Variability in the Pacific during the Altimetry Era Using Ensemble Empirical Mode Decomposition Method (앙상블 경험적 모드 분해법을 사용한 태평양의 지역별 해수면 변화 분석)

  • Cha, Sang-Chul;Moon, Jae-Hong
    • Ocean and Polar Research
    • /
    • v.41 no.3
    • /
    • pp.121-133
    • /
    • 2019
  • Natural variability associated with a variety of large-scale climate modes causes regional differences in sea level rise (SLR), which is particularly remarkable in the Pacific Ocean. Because the superposition of the natural variability and the background anthropogenic trend in sea level can potentially threaten to inundate low-lying and heavily populated coastal regions, it is important to quantify sea level variability associated with internal climate variability and understand their interaction when projecting future SLR impacts. This study seeks to identify the dominant modes of sea level variability in the tropical Pacific and quantify how these modes contribute to regional sea level changes, particularly on the two strong El $Ni{\tilde{n}}o$ events that occurred in the winter of 1997/1998 and 2015/2016. To do so, an adaptive data analysis approach, Ensemble Empirical Mode Decomposition (EEMD), was undertaken with regard to two datasets of altimetry-based and in situ-based steric sea levels. Using this EEMD analysis, we identified distinct internal modes associated with El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) varying from 1.5 to 7 years and low-frequency variability with a period of ~12 years that were clearly distinct from the secular trend. The ENSO-scale frequencies strongly impact on an east-west dipole of sea levels across the tropical Pacific, while the low-frequency (i.e., decadal) mode is predominant in the North Pacific with a horseshoe shape connecting tropical and extratropical sea levels. Of particular interest is that the low-frequency mode resulted in different responses in regional SLR to ENSO events. The low-frequency mode contributed to a sharp increase (decrease) of sea level in the eastern (western) tropical Pacific in the 2015/2016 El $Ni{\tilde{n}}o$ but made a negative contribution to the sea level signals in the 1997/1998 El $Ni{\tilde{n}}o$. This indicates that the SLR signals of the ENSO can be amplified or depressed at times of transition in the low-frequency mode in the tropical Pacific.