• Title/Summary/Keyword: Shape Optimum Design

Search Result 648, Processing Time 0.029 seconds

Size, Shape and Topology Optimum Design of Trusses Using Shape & Topology Genetic Algorithms (Shape & Topology GAs에 의한 트러스의 단면, 형상 및 위상최적설계)

  • Park, Choon-Wook;Yuh, Baeg-Youh;Kim, Su-Won
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.43-52
    • /
    • 2004
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algerian was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF

Shape & Topology Optimum Design of Truss Structures Using Genetic Algorithms (유전자 알고리즘에 의한 평면 및 입체 트러스의 형상 및 위상최적설계)

  • Yuh, Baeg-Youh;Park, Choon-Wook;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.93-102
    • /
    • 2002
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF

Simplified method to design laterally loaded piles with optimum shape and length

  • Fenu, Luigi;Briseghella, Bruno;Marano, Giuseppe Carlo
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.119-129
    • /
    • 2019
  • Optimum shape and length of laterally loaded piles can be obtained with different optimization techniques. In particular, the Fully Stress Design method (FSD) is an optimality condition that allows to obtain the optimum shape of the pile, while the optimum length can be obtained through a transversality condition at the pile lower end. Using this technique, the structure is analysed by finite elements and shaped through the FSD method by contemporarily checking that the transversality condition is satisfied. In this paper it is noted that laterally loaded piles with optimum shape and length have some peculiar characteristics, depending on the type of cross-section, that allow to design them with simple calculations without using finite element analysis. Some examples illustrating the proposed simplified design method of laterally loaded piles with optimum shape and length are introduced.

Optimum Blank Design of Automobile Sub-Frame (우물정자형 Sub-frame의 블랭크 설계)

  • 김종엽;김낙수;허만성
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.185-195
    • /
    • 1998
  • A new blank design method is proposed to predict the optimum initial blank shape in the sheet metal forming process. The rollback method for blank shape design takes the difference between final deformed shape and target contour shape into account. Based on the method, a computer program composed of blank design module, FE-analysis program and mesh generation module is developed. The rollback method is applied to square cup drawing process with the flange of unifiorm size around its periphery to confirm its validity. The optimum initial blank shape is obtained from an arbitrary square blank after three modifications. Good agreements are recognized between the numerical results and the published results for initial blank shape and thickness strain distribution. The optimum blank shape for two parts of automobile sub-frame is designed. The thickness distribution and the level of punch load is improved. Also, the method is applied to design the weld line in the tailor-welded blank. It is concluded that the rollback method is an effective and convenient method for an optimum blank shape design.

  • PDF

Optimum Blank Design of Automobile Sub-Frame (우물정(井)자형 Sub-frame의 블랭크 설계)

  • Kim, Jong-Yop;Kim, Nak-Soo;Heo, Man-Seong
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.260-273
    • /
    • 1998
  • A new blank design method is proposed to predict the optimum initial blank shape in the sheet metal forming process. The rollback method for blank shape design takes the difference between final deformed shaped and target contour shape into account. Based on the method a computer program composed of blank design module FE-analysis program and mesh generation module is developed. The rollback method is applied to square cup drawing process with the flange of unifiorm size around its periphery to confirm its validity. The optimum initial blank shape is obtained from an arbitrary square blank after three modification. Good agreements are recognized between the numerical results and the published results for initial blank shape and thickness strain distribution. The optimum blank shape for two parts of automobile sub-frame is designed, The thickness distribution and the level of punch load is improved. Also the method is applied to design the weld line in the tailor-welded blank. It is concluded that the rollback method is an effective and convenient method for an optimum blank shape design.

  • PDF

Blank Design in Sheet Metal forming Process Using the Rollback Method (롤백방법을 이용한 박판금속성형공정에서의 블랭크 설계)

  • 김종엽;김낙수;허만성
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.454-464
    • /
    • 1999
  • A new blank design method is proposed to predict the optimum initial blank shape in the sheet metal forming process. The rollback method for blank shape design takes the difference between the deformed blank contour and the target contour shape into account. the minimization object function R is proposed. Based on the method, a computer program composed of blank design module, FE-analysis module and mesh generation module is developed. The rollback method is applied to square cup, reentrant cross section, L-shaped cup drawing process with the flange of uniform size around its periphery to confirm its validity. The optimum initial blank shape is obtained from an arbitrary blank shape after several modifications. Good agreements are recognized between the numerical results and the published experimental results for initial blank shape and thickness strain distribution. It is concluded that the rollback method is an effective and convenient method for an optimum blank shape design.

  • PDF

Optimum design of a pilger mill process for wire forming using CAD/CAE (CAD/CAE를 이용한 세선 성형용 필거밀 공정의 최적설계)

  • 정용수;박훈재;김승수;나경환;이형욱;한창수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.84-88
    • /
    • 2003
  • In this paper, The optimum design of a die shape has been carried out the FEM analysis of a pilger mill process considering various factors. The pilger mill forming process consists of a pair of rotating die which has appropriate surface shape. The important design parameters of the pilger mill are the feed rate and the profile of grooved die. Optimum design procedure was performed in order to investigated effects on the forming load and the deformed shape of material depending on the die radius profile. Profile of the die surface for the optimum design were suggested with the linear, the cosine and the quadratic curve considering a physical forming process. The surface of each die was modeled using the 3DAutoCAD and the analysis of pilger forming process was performed using the LS-DYNA3D. The optimum profile of the die shape for the pilger mill was determined to the quadratic profile. Since the analysis results provide that the model of the quadratic profile gives the lowest forming load and a proper deformed shape.

  • PDF

Shape & Topology Optimum Design of Truss Structures Using Genetic Algorithms (유전자 알고리즘에 의한 트러스의 형상 및 위상최적실계)

  • Park, Choon Wook;Youh, Baeg Yuh;Kang, Moon Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.673-681
    • /
    • 2001
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithm. The algorithm can perform both shape and topology optimum designs of trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithm. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the design points selected form the genetic process. The evolutionary process evaluates the survivability of the design points. The evolutionary process evaluates the survivability of the design points selected form the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithm was verified by applying the algorithm to optimum design examples.

  • PDF

The Shape Optimization Design of Space Trusses Using Genetic Algorithms (퍼지-유전자 알고리즘에 의한 공간 트러스의 형상 최적화)

  • Park, Choon-Wook;Kim, Su-Won;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.61-70
    • /
    • 2002
  • The objective of this study is the development of a size and shape discrete optimum design algorithms, which is based on the genetic algorithms and the fuzzy theory. This algorithms can perform both size and shape optimum designs of plane and space trusses. The developed fuzzy shape-GAs (FS-GAs) was implemented in a computer program. For the optimum design, the objective function is the weight of structures and the constraints are limits on loads and serviceability. This study solves the problem by introducing the FS-GAs operators into the genetic.

  • PDF

Blank Design for Sheet Metal Product Based on Direct Design Method (직접설계법에 의한 박판부품의 초기형상설계)

  • 윤정환;김상국;정관수;연의정
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.598-603
    • /
    • 2000
  • In order to improve trial-and-error based conventional practices for optimizing forming processes, a direct design method to guide iterative design practices, called the ideal forming theory, has been previously developed. In the theory, material elements are required to deform following the minimum Plastic work Path. The theory can be used to determine the ideal initial blank shape needed to best achieve a specified final shape while resulting in optimum strain distributions. In this work, the direct design method based on the ideal forming theory was applied to design initial design shape for VCR deck chassis. Based on the solution of the ideal forming theory, FEM analysis was utilized to evaluate an optimum blank shape to be formed without tearing. Simulation results are in good agreement with experimental data. It was shown that the proposed sequential design procedure based on direct design method and FEM can be successfully applied to optimize the die design Procedure of sheet metal forming processes.

  • PDF