• Title/Summary/Keyword: Shape Monitoring

Search Result 495, Processing Time 0.03 seconds

Data anomaly detection for structural health monitoring of bridges using shapelet transform

  • Arul, Monica;Kareem, Ahsan
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.93-103
    • /
    • 2022
  • With the wider availability of sensor technology through easily affordable sensor devices, several Structural Health Monitoring (SHM) systems are deployed to monitor vital civil infrastructure. The continuous monitoring provides valuable information about the health of the structure that can help provide a decision support system for retrofits and other structural modifications. However, when the sensors are exposed to harsh environmental conditions, the data measured by the SHM systems tend to be affected by multiple anomalies caused by faulty or broken sensors. Given a deluge of high-dimensional data collected continuously over time, research into using machine learning methods to detect anomalies are a topic of great interest to the SHM community. This paper contributes to this effort by proposing a relatively new time series representation named "Shapelet Transform" in combination with a Random Forest classifier to autonomously identify anomalies in SHM data. The shapelet transform is a unique time series representation based solely on the shape of the time series data. Considering the individual characteristics unique to every anomaly, the application of this transform yields a new shape-based feature representation that can be combined with any standard machine learning algorithm to detect anomalous data with no manual intervention. For the present study, the anomaly detection framework consists of three steps: identifying unique shapes from anomalous data, using these shapes to transform the SHM data into a local-shape space and training machine learning algorithms on this transformed data to identify anomalies. The efficacy of this method is demonstrated by the identification of anomalies in acceleration data from an SHM system installed on a long-span bridge in China. The results show that multiple data anomalies in SHM data can be automatically detected with high accuracy using the proposed method.

An Application of Smart Composite for Health Monitoring (Health Monitoring을 위한 스마트 복합재료의 적용)

  • Lee, Jin-Kyung;Ha, Young-Joon;Park, Young-Chul;Lee, Joon-Hyun;Lee, Sang-Pill
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.328-338
    • /
    • 2007
  • One of main advantages of composite using smart material as reinforcement can be controlled cracks behavior inside the composite. If the smart composite is applied as part of the structure, the use of the shape memory effect of the smart material is the best way to protect the propagation of cracks generated in the structure while use. In this study, the optical manufacturing conditions for the smart composite were derived. In order to evaluate the shape memory effect by shape memory alloy, the tensile load was applied to the smart composite and stress distribution was inspected. And then, the smart composite was heated to a certain temperature and the shape memory alloy would shrink to the original shape. Finally, at this point the recovering status of stress using photoelastic instrument was discussed.

Pseudo-BIPV Style Rooftop-Solar-Plant Implementation for Small Warehouse Case

  • Cha, Jaesang;Cho, Ju Phil
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.187-196
    • /
    • 2022
  • In this paper, we propose an example of designing and constructing a roof-type solar power plant structure equipped with a Pseudo-BIPV (Building-Integrated Photovoltaic) shape suitable for use as a roof of a small warehouse with a sandwich-type panel structure. As the characteristics of the roof-type solar power generation facility to be installed in the small warehouse proposed in this study, the shape of the roof is not a general A type, but a right-angled triangle shape with the slope is designed to face south. We chose a structure in which an inverter for one power plant and a control facility are linked by grouping several roofs of buildings. In addition, the height of the roof structure is less than 20 cm from the floor, and it has a shape similar to that of the BIPV, so it is building-friendly because it is almost in close contact with the roof. At the same time, the roof creates a reflective light source due to the white color. By linking this roof with a double-sided solar panel, we designed it to obtain both the advantage of the roof-friendliness and the advantage of efficiency improvement for the electric power generation based on the double-sided panel. Compared to the existing solar power generation facilities using A-shaped cross-sectional modules, the power generation efficiency of roofs in this case is increased by more than 11%, which we can confirm, through the comparison analysis of monitoring data between power plants in the same area. Therefore, if the roof-type solar structure suitable for the small warehouse we have presented in this paper is used, the facilities of electric power generation is eco-friendly. Further it is easier to obtain facility certification compared to the BIPV, and improved capacity of the power generation can be secured at low material cost. It is believed that the roof-type solar power generation facility we proposed can be usefully used for warehouse or factory-based smart housing. Sensor devices for monitoring, CCTV monitoring, or safety and environment management, operating in connection with the solar power generation facilities, are linked with the Internet of Things (IoT) solution, so they can be monitored and controlled remotely.

Monitoring of Grinding Wheel Wear in Surface Grinding Process by Using Laser Scanning Micrometer

  • Ju, Kwang-Hun;Kim, Hyun-Soo;Hong, Seong-Wook;Park, Chun-Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.81-86
    • /
    • 2001
  • This paper deals with the monitoring of grinding wheel wear in surface grinding process. A monitoring system, which makes use of a laser scanning micrometer, is developed to measure the circumferential shape as well as the axial profile of grinding wheel. The monitoring system is applied to surface grinding processes. The experimental results show that the developed monitoring system is useful not only for monitoring the amount of wear in grinding wheel but also for evaluation the quality of ground surface and determining proper derssing time for the grinding wheel.

  • PDF

Tool-Setup Monitoring of High Speed Precision Machining Tool

  • Park, Kyoung-Taik;Shin, Young-Jae;Kang, Byung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.956-959
    • /
    • 2004
  • Recently the monitoring system of tool setting in high speed precision machining center is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and the productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining tool and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3$^{\sim}$20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setup easy, quick and precise in high speed machining tool. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setup monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000${\sim}$60,000 rpm. The dynamic phenomena of tool-setup are analyzed by implementing the monitoring system of rotating tool system and the non-contact measuring system of micro displacement in high speed.

  • PDF

Significance of Three-Dimensional Digital Documentation and Establishment of Monitoring Basic Data for the Sacred Bell of Great King Seongdeok (성덕대왕신종의 3차원 디지털 기록화 의미와 모니터링 기초자료 구축)

  • Jo, Younghoon;Song, Hyeongrok;Lee, Sungeun
    • Conservation Science in Museum
    • /
    • v.24
    • /
    • pp.55-74
    • /
    • 2020
  • The Sacred Bell of Great King Seongdeok is required digital precision recording of conservation conditions because of corrosion and partial abrasion of its patterns and inscriptions. Therefore, this study performed digital documentation of the bell using four types of scanning and unmanned aerial vehicle (UAV) photogrammetry technologies, and performed the various shape analyses through image processing. The modeling results of terrestrial laser scanning and UAV photogrammetry were merged and utilized as basic material for monitoring earthquake-induced structural deformation because these techniques can construct mutual spatial relationships between the bell and its tower. Additionally, precision scanning at a resolution four to nine times higher than that of the previous study provided highly valuable information, making it possible to visualize the patterns and inscriptions of the bell. Moreover, they are well-suited as basic data for identifying surface conservation conditions. To actively apply three-dimensional scanning results to the conservation of the original bell, the time and position of any changes in shape need to be established by further scans in the short-term. If no change in shape is detected by short-term monitoring, the monitoring should continue in medium- and long-term intervals.

Development of the Stereo Camera System for Active Remote Monitoring (능동적 원격감시를 위한 스테레오 카메라 시스템의 개발)

  • Park, K.;Cho, D. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.437-441
    • /
    • 1997
  • In the conventional remote monitoring system, a user in front of a computer monitor can acquire only 2 dimensional visual information in a passive way. Thus, even thoght the user finds an interesting object from the video image, helshe can hardly acquire additional information on the object such as name. 311 shape, etc. In this paper, an active monitoring system that shows additional information on the selected object is proposed. The active remote monitoring system can calculate the 3D position of the object that is selected in the video images. Then, using the 3D position of the object, other information on the object can be retrieved from the database and shown on the screen. To calculate the 3D position of the object, 2 CCD cameras that can be tilted and panned using 3 stepping motors are used. The algorithm of 3D position calculation and the result of experiments are explained.

  • PDF

An Experimental Study on the Runout Characteristics of Spindle State Monitoring Using an Optical Fiber Displacement Sensor (광 파이버 변위 센서를 이용한 주축 모니터링 시 나타나는 런아웃 특성에 대한 실험적 고찰)

  • 신우철;박찬규;정택구;홍준희;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.472-477
    • /
    • 2003
  • Spindle state monitoring is getting more and more important according to the technology trend of spindle that is accurate and automated. Spindle state monitoring is to measure the state of rotation vibrations. The spindle rotation error motion detected by sensing device includes rotation object's unbalance, external forced vibrations, shape error of spindle, as well as measuring error of monitoring device. In this paper, we have inspected the runout characteristics. Also, we introduce the way to exclude the runout element that appear while you monitor a spindle state.

  • PDF

Gas Flow Rate Dependency of Etching Result: Use of VI Probe for Process Monitoring (가스 유량 변화에 따른 식각 공정 결과: VI Probe 활용 가능성 제안)

  • Song, Wan Soo;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.27-31
    • /
    • 2021
  • VI probe, which is one of various in-situ plasma monitoring sensor, is frequently used for in-situ process monitoring in mass production environment. In this paper, we correlated the plasma etch results with VI probe data with the small amount of gas flow rate changes to propose usefulness of the VI probe in real-time process monitoring. Several different sized contact holes were employed for the etch experiment, and the etched profiles were measured by scanning electron microscope (SEM). Although the shape of etched hole did not show satisfactory relationship with VI probe data, the chamber status changed along the incremental/decremental modification of the amount of gas flow was successfully observed in terms of impedance monitoring.

Engineering critical assessment of RPV with nozzle corner cracks under pressurized thermal shocks

  • Li, Yuebing;Jin, Ting;Wang, Zihang;Wang, Dasheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2638-2651
    • /
    • 2020
  • Nozzle corner cracks present at the intersection of reactor pressure vessels (RPVs) and inlet or outlet nozzles have been a persistent problem for a number of years. The fracture analysis of such nozzle corner cracks is very important and critical for the efficient design and assessment of the structural integrity of RPVs. This paper aims to perform an engineering critical assessment of RPVs with nozzle corner cracks subjected to several transients accompanied by pressurized thermal shocks. The critical crack size of the RPV model with nozzle corner cracks under transient loading is evaluated on failure assessment curve. In particular, the influence of cladding on the crack initiation of nozzle corner crack under thermal transients is studied. The influence of primary internal pressure and secondary thermal stress on the stress field at nozzle corner and SIF at crack front is analyzed. Finally, the influence of different crack size and crack shape on the final critical crack size is analyzed.