• Title/Summary/Keyword: Shape Memory Polymer

Search Result 53, Processing Time 0.032 seconds

Experimental Study on Shear Retrofitting of Concrete Columns Using Iron-Based Shape Memory Alloy (철계 형상기억합금을 이용한 콘크리트 기둥의 전단보강 실험연구)

  • Jung, Donghuk;Jeong, Saebyeok;Choi, Jae-Hee;Kim, Geunoh
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.41-46
    • /
    • 2024
  • The current study investigates the seismic performance of shear-dominant RC columns retrofitted with iron-based shape memory alloy (Fe SMA). Three RC columns with insufficient transverse reinforcement were designed and fabricated for lateral cyclic loading tests. Before testing, two specimens were externally confined with carbon fiber-reinforced polymer (CFRP) sheets and self-prestressed Fe SMA strips. The test results showed that both CFRP and Fe SMA performed well in preventing severe shear failure exhibited by the unretrofitted control specimen. Furthermore, the two retrofitted specimens showed ductile flexural responses up to the drift ratios of ±8%. In terms of damage control, however, the Fe SMA confinement was superior to CFRP confinement in that the spalling of concrete was much less and that the rupture of confinement did not occur.

A Study on Multi-Vehicle Control of Electro Active Polymer Actuator based on Embedded System using Adaptive Fuzzy Controller (Adaptive Fuzzy 제어기를 이용한 Embedded 시스템 기반의 기능성 고분자 구동체의 이중제어에 관한 연구)

  • 김태형;김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.307-310
    • /
    • 1997
  • In case of environment requiring safety such as human body and requiring flexible shape, a conventional mechanical actuator system does not satisfy requirement. Therefore, in order to solve this problem, a research of various smart material such as EAP (Electro Active Polymer), EAC (Electro Active Ceramic) and SMA (Shape Memory Alloy) is in progress. Recently, the highest preferring material among various smart material is EP (Electrostictive Polymer), because it has very fast response time, poerful force and large displacement. The previous researches have been studied properties of polymer and simple control, but present researches are studied a polymer actuator. An EP (Electostrictive Polymer) actuator has properties which change variably as shape and environmental condition. Therefore, in order to coincide with a user's purpose, it is important not only to decide a shape of actuator and mechanical design but also to investigate a efficient controller. In this paper, we constructed the control logic with an adaptive fuvy algorithm which depends on the physical properties of EP that has a dielectric constant depending on time.

  • PDF

Synthesis of Polyurethanes Containing Poly(dimethyl siloxane) and Their Thermal and Shape Memory Properties (폴리디메틸실록산 성분을 포함하는 폴리우레탄의 합성과 이들의 열적 및 형상기억 특성)

  • Ra, Sang Hee;Kim, Young Ho
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.602-612
    • /
    • 2014
  • Polyurethanes containing poly(dimethyl siloxane) (PDMS) unit, PU-Si, were synthesized and their thermal and shape memory properties were investigated. Various amounts of PDMS units were incorporated via a solution polymerization method using mixed diols of poly(tetramethylene ether glycol) (PTMEG) and PDMS-diol as the soft segment (SS) and methylene diphenyl diisocyanate and 1,4-butanediol as the hard segment (HS). Two series of PU-Si samples with an HS content of 23% or 32% were prepared and analyzed. For PU-Si with an HS content of 23%, both the cold crystallization temperature ($T_{cc}$) and melt crystallization temperature of the SS domain moved higher temperature with increasing PDMS content, while the melting temperature ($T_m$) of the SS domain remained unaffected. The increase in HS content from 23% to 32% resulted in the increased $T_m$ and disappearance of $T_{cc}$. The shape recovery of PU-Si flim with an HS content of 32% increased while its shape retention decreased as PDMS content increased.

Development of Strength Analysis Modules for TiNi/Al 6061 Shape Memory Alloy (TiNi/Al 6061 형상기억 복합재료의 강도해석 모듈 개발)

  • 이동화;박영철;박동성;이규창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.692-696
    • /
    • 2001
  • Thermo-mechanical behavior and mechanical properties of intelligent polymer matrix composite with SMA fiber are experimentally studied. It is found that increments of compressive thermal strain is observed as the pre-strain and TiNi volume fraction increase. The smartness of the SMA is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being prestrained. In the paper, alloy is based on the general purpose commercial code ANSYS. And for the purpose of easy and fast user's analysis, it is developed the Graphical User Interface by using Tcl/Tk language.

  • PDF

Electrospinning of Polyurethane Block Copolymers with Shape Memory Effect (형상기억효과를 가지는 전기방사된 폴리우레탄 부직포에 관한 연구)

  • Cha, Dong-Il;Kim, Hak-Yong;Jung, Yong-Chae;Cho, Jae-Whan;Chun, Byoung-Chul;Jung, Yong-Chan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.261-262
    • /
    • 2003
  • Shape memory polyurethane (PU) with soft and hard segments has been extensively researched since its discovery by Mitsubishi in 1988 [1]. Hard segments can be formed via hydrogen bonding and crystallization, function as physical crosslinks below melting point (Tm). The reversible phase transformation of the soft segment is responsible for the shape memory effect. (omitted)

  • PDF

A Study of Dynamic Characteristics of Segmented Shape Memory Alloy Wire (구간 분할된 형상기억합금 와이어의 동특성에 관한 연구)

  • Jeong S.H.;Kim J.H.;Kim G.H.;Lee S.H.;Shin S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.329-330
    • /
    • 2006
  • The research and development of an actuator are accelerating in the robotics industry. The electricity polymer and SMA actuator are designed simply and are produced a lot of forces per unit volume. Their motions are similar to human's motion, But the repeatability of the electricity polymer actuator is lower. The reaction velocity of the SMA actuator is slow and the travel is short. In this paper, the dynamic characteristic of the segmented SMA is studied. The SMA wire is divided by using the Thermo-electric module(TEM) to control each of segments independently. The MOSFET circuit is used to supply constant currents fer the Thermo-electric module(TEM). The hysteresis and displacement of the SMA wire according to load are measured.

  • PDF

A Study on Multi-Vehicle Control of Electro Active Polymer Actuator based on Embedded System using Adaptive Fuzzy Controller (Adaptive Fuzzy 제어기를 이용한 Embedded 시스템 기반의 기능성 고분자 구동체 다중제어에 관한 연구)

  • 김태형;김훈모
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.94-103
    • /
    • 2003
  • In case of environment requiring safety such as human body and requiring flexible shape, a conventional mechanical actuator system does not satisfy requirements. Therefore, in order to solve these problems. a research of various smart material such as EAP (Electro Active Polymer), EAC (Electro Active Ceramic) and SMA (Shape Memory Alloy) is in progress. Recently, the highest preferring material among various smart material is EP (Electrostictive Polymer), because it has very fast response time, powerful force and large displacement. The previous researches have been studied properties of polymer and simple control, but present researches are studied a polymer actuator. An EP (Electostrictive Polymer) actuator has properties which change variably ils shape and environmental condition. Therefore, in order to coincide with a user's purpose, it is important not only to decide a shape of actuator and mechanical design but also to investigate a efficient controller. In this paper, we constructed the control logic with an adaptive fuzzy algorithm which depends on the physical properties of EP that has a dielectric constant depending on time. It caused for a sub-actuator to operate at the same time that a sub-actuator system operation increase with a functional improvement and control efficiency improvement in each actuator, hence it becomes very important to manage it effectively and to control the sub-system which Is operated effectively. There is a limitation on the management of Main-host system which has multiple sub-system, hence it brings out the Multi-Vehicle Control process that disperse the task efficiently. Controlling the multi-dispersion system efficiently, it needs the research of Main-host system's scheduling, data interchange between sub-actuators, data interchange between Main-host system and sub-actuator system, and data communication process. Therefore in this papers, we compared the fuzzy controller with the adaptive fuzzy controller. also, we applied the scheduling method for efficient multi-control in EP Actuator and the algorithm with interchanging data, protocol design.

Characterization and Mechanical Properties of Prepolymer and Polyurethane Block Copolymer with a Shape Memory Effect

  • Cho, Jae-Whan;Jung, Yong-Chae;Lee, Sun-Hwa;Chun, Byoung-Chul;Chung, Yong-Chan
    • Fibers and Polymers
    • /
    • v.4 no.3
    • /
    • pp.114-118
    • /
    • 2003
  • The prepolymer and the final polyurethane (PU) block copolymer were synthesized by reacting 4,4-methylene bis(phenylisocyanate) with poly(tetramethylene glycol) and the prepolymer with 1,4-butanediol as a chain extender, respectively, to investigate the relation between phase separation and it's resulting properties. According to FT-IR data, the phase separation of hard and soft segments in the prepolymer and the PU block copolymer grew bigger by increasing the hard segment content, and the PU showed more dominant phase separation than the prepolymer. The heat of fusion due to soft segments decreased in both the prepolymer and the PU by increasing the hard segment content, whereas the heat of fusion due to hard segments increased in the PU did not appear in the prepolymers. The breaking stress and modulus of the prepolymer increased by increasing the hard segment content, and the elongation at break decreased gradually, and the PU showed the highest breaking stress and modulus at 58% hard segment content. However, the best shape recovery of the PU was obtained at 47% hard segment content due to the existence of proper interaction among the hard segments for shape memory effect. Consequently, the mechanical properties and shape memory effect of the PU were influenced by the degree of phase separation, depending on the incorporation of chain extender as well as the hard segment content.