• Title/Summary/Keyword: Shape Iteration Method

Search Result 70, Processing Time 0.025 seconds

A Study on an Iteration Method for the Determination the Initial shape of the Cable (연직하중을 받는 케이블의 형상결정을 위한 반복계산법의 개발)

  • 계만수;정진환;조현영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.83-90
    • /
    • 2001
  • In the design of cable structures it is necessary to know the initial shape of the cable. The geometrical condition and the equilibrium equation of the cable are needed. Because the equilibrium equation is expressed by the simultaneous equations of second order, it is almost impossible to solve with elimination method. To solve it, we must use iteration method. In this study, the algorithm which can reduce the number of iteration and calculate shape of the cable is developed and compared with measured data through the laboratory test and the results represent good agreements.

  • PDF

Calculation of Low Aspect Ratio Wing Aerodynamics by Using Nonlinear Vortex Lattice Method (비선형 와류격자법을 이용한 낮은 종횡비 날개의 공력특성 계산)

  • Lee, Tae-Seung;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1039-1048
    • /
    • 2008
  • new computational procedure for the Non-Linear Vortex Lattice Method (NLVLM) is suggested in this work. Conventional procedures suggested so far usually involves inner iteration loop to update free vortex shape and an under-relaxation based iteration loop to determine the free vortex shape. In this present work, we suggest a new formula based on quasi-steady concept to fix free vortex shape which eliminates the need for inner iteration loop. Further, the ensemble averaging of the induced velocities for a given free vortex segment evaluated at each iteration significantly improves the convergence property of the algorithm without resorting to the under-relaxation technique. Numerical experiments over several low aspect ratio wings are carried out to obtain optimal empirical parameters such as the length of the free vortex segment, the vortex core radius, and the rolled-up wake length.

Shape Optimization on the Nozzle of a Spherical Pressure Vessel Using the Ranked Bidirectional Evolutionary Structural Optimization (등급 양방향 진화적 구조 최적화 기법을 이용한 구형 압력용기 노즐부의 형상최적화)

  • Lee, Young-Shin;Ryu, Chung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.752-757
    • /
    • 2001
  • To reduce stress concentration around the intersection between a spherical pressure vessel and a cylindrical nozzle under various load conditions using less material, the optimization for the distribution of reinforcement has researched. The ranked bidirectional evolutionary structural optimization(R-BESO) method is developed recently, which adds elements based on a rank, and the performance indicator which can estimate a fully stressed model. The R-BESO method can obtain the optimum design using less iteration number than iteration number of the BESO. In this paper, the optimized intersection shape is sought using R-BESO method for a flush and a protruding nozzle. The considered load cases are a radial compression, torque and shear force.

  • PDF

Influence of lateral motion of cable stays on cable-stayed bridges

  • Wang, P.H.;Liu, M.Y.;Huang, Y.T.;Lin, L.C.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.719-738
    • /
    • 2010
  • The aim of this paper concerns with the nonlinear analysis of cable-stayed bridges including the vibration effect of cable stays. Two models for the cable stay system are built up in the study. One is the OECS (one element cable system) model in which one single element per cable stay is used and the other is MECS (multi-elements cable system) model, where multi-elements per cable stay are used. A finite element computation procedure has been set up for the nonlinear analysis of such kind of structures. For shape finding of the cable-stayed bridge with MECS model, an efficient computation procedure is presented by using the two-loop iteration method (equilibrium iteration and shape iteration) with help of the catenary function method to discretize each single cable stay. After the convergent initial shape of the bridge is found, further analysis can then be performed. The structural behaviors of cable-stayed bridges influenced by the cable lateral motion will be examined here detailedly, such as the static deflection, the natural frequencies and modes, and the dynamic responses induced by seismic loading. The results show that the MECS model offers the real shape of cable stays in the initial shape, and all the natural frequencies and modes of the bridge including global modes and local modes. The global mode of the bridge consists of coupled girder, tower and cable stays motion and is a coupled mode, while the local mode exhibits only the motion of cable stays and is uncoupled with girder and tower. The OECS model can only offers global mode of tower and girder without any motion of cable stays, because each cable stay is represented by a single straight cable (or truss) element. In the nonlinear seismic analysis, only the MECS model can offer the lateral displacement response of cable stays and the axial force variation in cable stays. The responses of towers and girders of the bridge determined by both OECS- and MECS-models have no great difference.

Application of the Growth-Strain Method for Shape Optimization (형상 최적화를 위한 성장-변형률법의 적용)

  • 이경래
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.27-34
    • /
    • 1999
  • The growth-strain method was used for shape optimization, which carries out the optimization by distributing uniformly the distributed parameter such as von Mises stress and shear strain energy density. Shape optimization is carried out by iteration of stress analysis and growth strain analysis. In this study, the effect of growth ratio in the method was investigated and then the range of the adequate value of the growth ratio was determined. Also the growth-strain method was improved by applying the linear PID control theory in order to control volume required by a designer. Finally, an automatic shape optimization system was built up by the improved growth-strain method with a commercial software using finite element method. The effectiveness and practicability of the developed shape optimization system was verified by some examples.

  • PDF

Sensitivity Analysis of the Galerkin Finite Element Method Neutron Diffusion Solver to the Shape of the Elements

  • Hosseini, Seyed Abolfazl
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.29-42
    • /
    • 2017
  • The purpose of the present study is the presentation of the appropriate element and shape function in the solution of the neutron diffusion equation in two-dimensional (2D) geometries. To this end, the multigroup neutron diffusion equation is solved using the Galerkin finite element method in both rectangular and hexagonal reactor cores. The spatial discretization of the equation is performed using unstructured triangular and quadrilateral finite elements. Calculations are performed using both linear and quadratic approximations of shape function in the Galerkin finite element method, based on which results are compared. Using the power iteration method, the neutron flux distributions with the corresponding eigenvalue are obtained. The results are then validated against the valid results for IAEA-2D and BIBLIS-2D benchmark problems. To investigate the dependency of the results to the type and number of the elements, and shape function order, a sensitivity analysis of the calculations to the mentioned parameters is performed. It is shown that the triangular elements and second order of the shape function in each element give the best results in comparison to the other states.

Shape Optimization of Electromagnetic Devices using High Order Derivativ (고차민감도를 이용한 전기기기 형상 최적화)

  • Ahn, Young-Woo;Kwak, In-Gu;Hahn, Song-Yop;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.241-243
    • /
    • 1998
  • This paper describes a new method for the faster shape optimization of the electromagnetic devices. In a conventional iterative method of shape design optimization using design sensitivity based on a finite element method, meshes for a new shape of the model are generated and a discretized system equation is solved using the meshes in each iteration. They cause much design time. To save this time, a polynomial approximation of the finite element solution with respect to the geometric design parameters using Taylor expansion is constructed. This approximate state variable expressed explicitly in terms of design parameters is employed in a gradient-based optimization method. The proposed method is applied to the shape design of quadrupole magnet.

  • PDF

A New Shape Adaptation Scheme to Affine Invariant Detector

  • Liu, Congxin;Yang, Jie;Zhou, Yue;Feng, Deying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1253-1272
    • /
    • 2010
  • In this paper, we propose a new affine shape adaptation scheme for the affine invariant feature detector, in which the convergence stability is still an opening problem. This paper examines the relation between the integration scale matrix of next iteration and the current second moment matrix and finds that the convergence stability of the method can be improved by adjusting the relation between the two matrices instead of keeping them always proportional as proposed by previous methods. By estimating and updating the shape of the integration kernel and differentiation kernel in each iteration based on the anisotropy of the current second moment matrix, we propose a coarse-to-fine affine shape adaptation scheme which is able to adjust the pace of convergence and enable the process to converge smoothly. The feature matching experiments demonstrate that the proposed approach obtains an improvement in convergence ratio and repeatability compared with the current schemes with relatively fixed integration kernel.

NLOS Signal Effect Cancellation Algorithm for TDOA Localization in Wireless Sensor Network

  • Kang, Chul-Gyu;Lee, Hyun-Jae;Oh, Chang-Heon
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.228-233
    • /
    • 2010
  • In this paper, the iteration localization algorithm that NLOS signal is iteratively removed to get the exact location in the wireless sensor network is proposed. To evaluate the performance of the proposed algorithm, TDOA location estimation method is used, and readers are located on every 150m intervals with rectangular shape in $300m{\times}300m$ searching field. In that searching field, the error distance is analyzed according to increasing the number of iteration, sub-blink and the estimated sensor node locations which are located in the iteration range. From simulation results, the error distance is diminished according to increasing the number of the sub-blink and iteration with the proposed location estimation algorithm in NLOS environment. Therefore, to get more accurate location information in wireless sensor network in NLOS environments, the proposed location estimation algorithm removing NLOS signal effects through iteration scheme is suitable.

A Study on the Optimal Shape Design of 2-D Structures (2차원 구조물의 최적형상설계에 관한 연구)

  • 김홍건;양성모;노홍길;나석찬;유기현;조남익
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.9-16
    • /
    • 2003
  • A strategy of the optimal shape design with FEA(Finite Element Analysis) for 2-D structure is proposed by comparing subproblem approximation method with first order approximation method. A cantilever beam with two different loading conditions, a concentrated load and an evenly distribute load, and truss structure with a concentrated loading condition are implemented to optimize the shape. It gives a good design strategy on the optimal truss structure as well as the optimal cantilever beam shape. It is found that the convergence is quickly finished with the iteration number below ten. Optimized shapes of cantilever beam and truss structure are shown with stress contour plot by the results of the subproblem approximation method and the first order approximation methd.