• Title/Summary/Keyword: Shape Function

Search Result 2,576, Processing Time 0.031 seconds

A STUDY ON THE AERODYNAMIC SHAPE DESIGN WITH THE PARSEC FUNCTION (PARSEC 함수를 이용한 헤어포일의 공력 형상 설계 연구)

  • Lee, Jae-Hun;Jung, Kyung-Jin;Kwon, Jang-Hyuk;Ahn, Joong-Ki
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.88-91
    • /
    • 2007
  • In the shape design optimization of an airfoil, the shape function has been used to find the optimal airfoil shape for given conditions. The parameters determining the airfoil shape are used in the shape design optimization as design variables. However, they usually don't have physical meaning. The PARSEC (Parametric Shapes) function is a recently proposed shape function and its parameters have the physical meaning. In this study the usefulness of the PARSEC is tested for the RAE2822 airfoil in the transonic flow region to reduce the shock strength and the result is compared with Hicks-Henne function. The optimized airfoils reduce the shock strength and they show similar result.

  • PDF

Shape Reconstruction from Unorganized Cloud of Points using Adaptive Domain Decomposition Method (적응적 영역분할법을 이용한 임의의 점군으로부터의 형상 재구성)

  • Yoo Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.89-99
    • /
    • 2006
  • In this paper a new shape reconstruction method that allows us to construct surface models from very large sets of points is presented. In this method the global domain of interest is divided into smaller domains where the problem can be solved locally. These local solutions of subdivided domains are blended together according to weighting coefficients to obtain a global solution using partition of unity function. The suggested approach gives us considerable flexibility in the choice of local shape functions which depend on the local shape complexity and desired accuracy. At each domain, a quadratic polynomial function is created that fits the points in the domain. If the approximation is not accurate enough, other higher order functions including cubic polynomial function and RBF(Radial Basis Function) are used. This adaptive selection of local shape functions offers robust and efficient solution to a great variety of shape reconstruction problems.

Representation of 3 Dimensional Automobile Configurations with Vehicle Modeling Function for a Shape Optimization (형상 최적화를 위한 Vehicle Modeling Function 을 이용한 자동차 3 차원 형상 구현)

  • Rho, Joo-Hyun;Ku, Yo-Cheon;Yun, Su-Hwan;Lee, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1057-1062
    • /
    • 2008
  • Representing a complex, three-dimensional shape, such as an automobile, requires a large amount of CAD data consisting of millions of approximated discontinuous points, which makes it difficult or even impossible to efficiently optimize the entire shape. For this reason, in this paper, function based design method is proposed to optimize the external shape of an automobile. A vehicle modeling function was defined in the form of a Bernstein polynomial to smoothly express the complex 2D and 3D automobile configurations. The sub-sectional parts of the vehicle modeling function are defined as section functions through classifying each subsection of a box model. It is shown that the use of the vehicle modeling functions has the useful advantages in an aerodynamic shape optimization.

  • PDF

Sensitivity Analysis of the Galerkin Finite Element Method Neutron Diffusion Solver to the Shape of the Elements

  • Hosseini, Seyed Abolfazl
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.29-42
    • /
    • 2017
  • The purpose of the present study is the presentation of the appropriate element and shape function in the solution of the neutron diffusion equation in two-dimensional (2D) geometries. To this end, the multigroup neutron diffusion equation is solved using the Galerkin finite element method in both rectangular and hexagonal reactor cores. The spatial discretization of the equation is performed using unstructured triangular and quadrilateral finite elements. Calculations are performed using both linear and quadratic approximations of shape function in the Galerkin finite element method, based on which results are compared. Using the power iteration method, the neutron flux distributions with the corresponding eigenvalue are obtained. The results are then validated against the valid results for IAEA-2D and BIBLIS-2D benchmark problems. To investigate the dependency of the results to the type and number of the elements, and shape function order, a sensitivity analysis of the calculations to the mentioned parameters is performed. It is shown that the triangular elements and second order of the shape function in each element give the best results in comparison to the other states.

FE Lubrication Analyses of High-Speed Gas-Levitation Applications using High-Order Shape Function (고차 형상함수를 이용한 고속 가스부상 FE 윤활해석)

  • 이안성;김준호
    • Tribology and Lubricants
    • /
    • v.20 no.1
    • /
    • pp.14-20
    • /
    • 2004
  • In high-speed gas-levitation applications a high compressibility number may bring a numerical difficulty in predicting generated pressure profiles accurately as it causes erroneous sudden pressure overshoot and oscillation in the trailing-edge. To treat the problem, in this study an exact exponential high-order shape function is introduced in the FE lubrication analyses. It is shown by various example applications that the high-order shape function scheme can successfully subdue undesired pressure overshoot and oscillation.

A Shape Function for Meshless Method Using Partition Unity Method and Three-dimensional Applications (단위 분할법에 의한 무요소법의 형상함수와 3차원 적용)

  • Nam, Yong-Yun
    • 연구논문집
    • /
    • s.28
    • /
    • pp.123-135
    • /
    • 1998
  • A shape function for element free Galerkin method is carved from Shepard interpolant of singular weight and consistency condition. Thus present shape function is an interpolation and has no singularities. The shape function is applied to cantilever bending problems and gives good results in comparison with beam theory. Finally it is shown that the coupling with finite element method is made easily without any additional treaties.

  • PDF

Extraction of Shape Information of Cost Function Using Dynamic Encoding Algorithm for Searches(DEAS) (최적화기법인 DEAS를 이용한 비용함수의 형상정보 추출)

  • Kim, Jong-Wook;Park, Young-Su;Kim, Tae-Gyu;Kim, Sang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.790-797
    • /
    • 2007
  • This paper proposes a new measure of cost function ruggedness in local optimization with DEAS. DEAS is a computational optimization method developed since 2002 and has been applied to various engineering fields with success. Since DEAS is a recent optimization method which is rarely introduced in Korean, this paper first provides a brief overview and description of DEAS. In minimizing cost function with this non-gradient method, information on function shape measured automatically will enhance search capability. Considering the search strategies of DEAS are well designed with binary matrix structures, analysis of search behaviors will produce beneficial shape information. This paper deals with a simple quadratic function contained with various magnitudes of noise, and DEAS finds local minimum yielding ruggedness measure of given cost function. The proposed shape information will be directly used in improving DEAS performance in future work.

The Research of Airfoil Development for Wind Turbine Blade (풍력 블레이드용 익형 개발에 대한 연구)

  • Kim, Tae-Woo;Park, Sang-Gyoo;Kim, Jin-Bum;Kweon, Ki-Yeoung;Oh, Si-Deok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.512-515
    • /
    • 2009
  • This research describes on airfoil shape design, crucial to core technique and algorithm optimization for the wind turbine blade development. We grasped the parameter to define the airfoil shape in the wind turbine blade and aircraft, and the important performance characteristic of the airfoil. The airfoil shape function is selected by studying which is suitable for wind turbine blade airfoil development. The selected method is verified by to compare the generated airfoil shape with base airfoil. The new airfoils were created by the selecting shape function based on the well-known airfoil for wind turbine blades. In addition, we performed aerodynamic analysis about the generated airfoils by XFOIL and estimated the point of difference in the airfoil shape parameter using the aerodynamic performance results which is compared with basic airfoil. This result data applies to the fundamental research for a wind turbine blade optimization design and accomplished the aerodynamic analysis manual.

  • PDF

Equilibrium shape analysis of single layer structure by measure potential function

  • Ijima, Katsushi;Xi, Wei;Goto, Shigeo
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.775-784
    • /
    • 1997
  • A unified theory is presented for the shape analysis of curved surface with a single layer structure composed by frame, membrane or shell. The shapes produced by the theory have no shear stress in elements, and the stress states in the whole shape are as uniform as possible under an ordinary load. The theory starts from defining an element potential function expressed by the measurement of the element length or the element area. Therefore, the shape analysis can produce various forms according to the definition of the potential function, and each of those form or the cable net form with the potential function of the second power of element length is simply gotten by the linear analysis. The form in tensile stress is mechanically equal to an isotropic tension form.

Study on the Design Method for the Train Nose Shape Using the Configuration Function (형상함수를 이용한 열차 전두부 설계기법 연구)

  • Ku, Yo-Cheon;Rho, Joo-Hyun;Yun, Su-Hwan;Kwak, Min-Ho;Lee, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2218-2223
    • /
    • 2008
  • A nose shape is strongly related with the aerodynamic performances of train. Therefore shape definition and aerodynamic performance analysis are important for train nose shape design. In this study, a new design method was suggested for train nose shape design by configuration function. To this end, the nose shape was classified by box type and each box shape is defined. After that the 3-D shape of train was defined as several mathematical functions by combination of each box shape. Also it was shown that the wind shield of driver's seat and complex curves of surface can be expressed using superposition of functions. This methodology can be used for grid generation of numerical analysis, and applied to aerodynamic optimization design of nose shape.

  • PDF