• 제목/요약/키워드: Shape Engineering

검색결과 12,817건 처리시간 0.037초

U자형 적층 기생패치를 갖는 GPS/IMT-2000/Bluetooth용 PIFA 설계 (Design of PIFA with Stacked U-shape Parasitic Patch for GPS/IMT-2000/Bluetooth Application.)

  • 신경섭;김영두;원충호;이홍민
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 하계종합학술대회 논문집(1)
    • /
    • pp.197-200
    • /
    • 2004
  • In this paper, a novel triple-band planar inverted F antenna(PIFA) is proposed. The goal of this paper is to design a small antenna which is operated in triple band. Using T-shape slit and stacked U-shape parasitic patch, good impedance matching is achieved in three band. T-shape slit is inserted on the main patch in order to effectively control the excited patch surface current distributions. The proposed antenna occupies a small volume of $26{\times}9.5{\times}6mm^3$, and the obtained impedance bandwidths cover the required operating bandwidths of the GPS(1565-1585MHz), IMT-2000(1885-2200MHz) and Bluetooth (2400-2484MHz) bands.

  • PDF

Mode shape identification using response spectrum in experimental modal analysis

  • Babakhani, Behrouz;Rahami, Hossein;Mohammadi, Reza Karami
    • Structural Monitoring and Maintenance
    • /
    • 제5권3호
    • /
    • pp.345-361
    • /
    • 2018
  • The set of processes performed to determine the dynamic characteristics of the constructed structures is named experimental modal analysis. Using experimental modal analysis and interpreting its results, structural failure can be assessed and then it would be possible to plan for their repair and maintenance. The purpose of the experimental modal analysis is to determine the resonance frequencies, mode shapes and Mode damping for the structure. Diverse methods for determining the shape of the mode by various researchers have been presented. There are pros and cons for each of these methods. This paper presents a method for determining the mode shape of the structures using the response spectrum in the experimental modal analysis. In the first part, the principles of the proposed method are described. Then, to check the accuracy of the results obtained from the proposed method, single and multiple degrees of freedom models were numerically and experimentally investigated.

공력 향상과 RCS 감소를 고려한 무인 전투기의 형상 최적설계 (SHAPE OPTIMIZATION OF UCAV FOR AERODYNAMIC PERFORMANCE IMPROVEMENT AND RADAR CROSS SECTION REDUCTION)

  • 조영민;최성임
    • 한국전산유체공학회지
    • /
    • 제17권4호
    • /
    • pp.56-68
    • /
    • 2012
  • Nowadays, Unmanned Combat Air Vehicle(UCAV) has become an important aircraft system for the national defense. For its efficiency and survivability, shape optimization of UCAV is an essential part of its design process. In this paper, shape optimization of UCAV was processed for aerodynamic performance improvement and Radar Cross Section(RCS) reduction using Multi Objective Genetic Algorithm(MOGA). Lift and induced drag, friction drag, RCS were calculated using panel method, boundary layer theory, Physical Optics(PO) approximation respectively. In particular, calculation applied Radar Absorbing Material(RAM) was performed for the additional RCS reduction. Results are indicated that shape optimization is performed well for improving aerodynamic performance, reducing RCS. Further study will be performed with higher fidelity tools and consider other design segments including structure.

Application of Expert System for Non-Axisymmetric Deep Drawing Products

  • Park, Diong-Hwan;Kang, Sung-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권1호
    • /
    • pp.26-32
    • /
    • 2001
  • An ecpert system for rotationally symmetric deep drawing products has been developed. The application for non-axisymmetric components, however, has not been reported yet. This study construsctus and expert system for non-axisymmetric motor frame which shape is classified into ellipse in deep draqing process and investigates process sequence design with elliptical shape. The developed system consists of four modules. The first is recognition of calculate surface area for non-axisymmetric products. The third is blank design module the creates an oval-shaped blank with the same surface area. The fourth is a processplanning module based on production rules that play the best important roles in an expert system for manufacturing .The production rules are generated and upgraded by interviewing field engineers. Especially, drawing coefficient, punch and die radii for elliptical shape products are considered as main design parameters. The constructed system for elliptical deep drawing product would be very useful to reduce lead time and improve accuracy for products.

  • PDF

Shape factors of cylindrical permeameters

  • Silvestri, Vincenzo;Samra, Ghassan Abou;Bravo-Jonard, Christian
    • Geomechanics and Engineering
    • /
    • 제3권1호
    • /
    • pp.17-28
    • /
    • 2011
  • This paper presents an analytical solution for steady state flow into a close-ended cylindrical permeameter. The soil medium is considered to be uniform, isotropic, and of infinite thickness. Laplace equation is solved by considering rotational symmetry and by using curvilinear coordinates obtained from conformal mapping. The deduced shape factors, which are compared to approximate relationships obtained from both numerical and physical modelling, and idealizations involving ellipsoidal cavities, are proposed for use in field measurements. It is shown that some of the shape factors obtained are significantly different from published values and show a much higher dependence of the rate of flow on the aspect ratio, than deduced from approximate solutions.

자기-기립 가능한 차륜형 역진자 기구 기반의 이동로봇 개발 (A Development of the Self-Standable Mobile Robot Based on a Wheeled Inverted Pendulum Mechanism)

  • 이세한;강재관
    • 한국정밀공학회지
    • /
    • 제30권2호
    • /
    • pp.171-176
    • /
    • 2013
  • In this research a Self-Standable mobile Robot with standing arms based on an Wheeled Inverted Pendulum is developed. Almost existing mobile robots have wide planar shape that is statistically stable and it is sometimes hard for them to run or steer on a narrow road. A Wheeled Inverted Pendulum based mobile robot has vertical shape that is upright-running and easily steering on a narrow road. It, however, requires actively balancing control and never restores the shape once it falls down. This research develops a Self-Standable mobile robot which equips standing arms and is able to change its chassis' posture freely from planar to vertical shape or vice versa.

근거리 환경에서의 3차원 배열센서 형상 보정 기법 (3-Dimensional Sensor Array Shape Calibration in Near Field Environment)

  • 류창수;어수해;강현구;유상욱
    • 한국산업융합학회 논문집
    • /
    • 제6권4호
    • /
    • pp.361-366
    • /
    • 2003
  • Most sensor array signal processing methods for multiple source localization require knowledge of the correct shape of array(the correct positions of sensors that consist array), because sensor position uncertainty can severely degrade the performance of array signal processing. In particular, it is assumed that the correct positions of the sensors are known, but the known positions may not represent the true sensor positions. Various algorithms have been proposed for 2-D sensor array shape calibration in far field environment. However, they are not available in near field. In this paper, 3-D sensor array shape calibration algorithm is proposed, which is available in near field.

  • PDF

Upper Bound Analysis for Near-net Shape Forging of a Crown Gear Form

  • Lee, Seung-Dong;Kim, Won-Il;Kim, Yohng-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권2호
    • /
    • pp.94-104
    • /
    • 2000
  • A kinematically admissible velocity field for near-net shape forging of a crown gear form is proposed. This takes into account the profiled shape of the teeth chosen by approximating these kinematically as radially straight taper teeth, (rectangular and trapezoidal teeth). The upper bound to the forging load, the relative forging pressure and the deformed configurations, with both the initially solid circular cylindrical and hollow billets, are predicted using the velocity field at varying incremental punch movements considering differing frictional factors. These and other results are given and commented upon.

  • PDF

자동차용 냉간압연재의 드로우비드 성형시 비드 형상별 마찰특성에 관한 연구 (Study on the Friction Characteristics of Circular bead and rectangular bead in Drawbead Forming of Cold Rolled Steels for Automotive Parts)

  • 김동우;김원태;이동활;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.137-144
    • /
    • 2004
  • The drawbead is one of the most important factors in sheet metal forming for automotive parts. So clarifying the friction characteristics between sheets and drawbead is essential to improve the formability of sheet metal. Therefore in this study, drawbead friction test was performed at circular shape bead and rectangular shape bead. The results show that the tendency of drawing force for rectangular bead is nearly similar with circular bead and the drawing force is nearly proportional to friction coefficient.

  • PDF

Trust Region 기법을 이용한 공력 형상 최적설계 (The Aerodynamic Shape Optimization with Trust Region Methods)

  • 이재훈;정경진;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.130-133
    • /
    • 2008
  • In this paper the trust region method is studied and applied in aerodynamic shape optimization. The trust region method is a gradient-based optimization method, but it is not as popular as other methods in engineering computations. Its theory will be explained for unconstrained optimization problems and a trust region subproblem will be solved with the dogleg method. After verifying the trust region method with analytical test problems, it is applied to aerodynamic shape design optimization and the performance of airfoil is improved successfully.

  • PDF