• Title/Summary/Keyword: Shape Engineering

Search Result 12,820, Processing Time 0.038 seconds

A Study on Quality Improvement and Verification of Recycled Coarse Aggregate for Concrete Using an Impact Crusher with Radial Rotation (방사형 회전이 추가된 임팩트 크러셔를 이용한 콘크리트용 순환굵은골재 품질향상 및 검증 연구)

  • Jeon, Duk-Woo;Kim, Yong-Seong;Jeon, Chan-Soo;Choi, Won-Young;Cho, Won-Ig
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.133-142
    • /
    • 2022
  • The purpose of this study is to develop an impact crusher with a radial rotating plate installed at the bottom, which is a shock absorber that can produce high-quality recycled coarse aggregate for concrete and to verify the effect of improving the quality performance of recycled coarse aggregate and its applicability through concrete tests. As a result, it showed improved quality in all items such as absolute dry density, absorption rate, abrasion resistance, Particle shape judgment rate, amount lost in the 0.08 mm sieve passing test, alkali aggregate reaction, clay mass, stability, and impurity content, and it was found to meet the criteria of recycled aggregate quality standards. In addition, the air volume and slump of concrete to which recycled coarse aggregate is applied meet all domestic standards. According to the test results of the compressive strength characteristics by age of concrete according to the mixing ratio of the recycled coarse aggregate, it was confirmed that the mixing ratio of the recycled coarse aggregate was applicable up to 60 %.

Accuracy evaluation of liver and tumor auto-segmentation in CT images using 2D CoordConv DeepLab V3+ model in radiotherapy

  • An, Na young;Kang, Young-nam
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.341-352
    • /
    • 2022
  • Medical image segmentation is the most important task in radiation therapy. Especially, when segmenting medical images, the liver is one of the most difficult organs to segment because it has various shapes and is close to other organs. Therefore, automatic segmentation of the liver in computed tomography (CT) images is a difficult task. Since tumors also have low contrast in surrounding tissues, and the shape, location, size, and number of tumors vary from patient to patient, accurate tumor segmentation takes a long time. In this study, we propose a method algorithm for automatically segmenting the liver and tumor for this purpose. As an advantage of setting the boundaries of the tumor, the liver and tumor were automatically segmented from the CT image using the 2D CoordConv DeepLab V3+ model using the CoordConv layer. For tumors, only cropped liver images were used to improve accuracy. Additionally, to increase the segmentation accuracy, augmentation, preprocess, loss function, and hyperparameter were used to find optimal values. We compared the CoordConv DeepLab v3+ model using the CoordConv layer and the DeepLab V3+ model without the CoordConv layer to determine whether they affected the segmentation accuracy. The data sets used included 131 hepatic tumor segmentation (LiTS) challenge data sets (100 train sets, 16 validation sets, and 15 test sets). Additional learned data were tested using 15 clinical data from Seoul St. Mary's Hospital. The evaluation was compared with the study results learned with a two-dimensional deep learning-based model. Dice values without the CoordConv layer achieved 0.965 ± 0.01 for liver segmentation and 0.925 ± 0.04 for tumor segmentation using the LiTS data set. Results from the clinical data set achieved 0.927 ± 0.02 for liver division and 0.903 ± 0.05 for tumor division. The dice values using the CoordConv layer achieved 0.989 ± 0.02 for liver segmentation and 0.937 ± 0.07 for tumor segmentation using the LiTS data set. Results from the clinical data set achieved 0.944 ± 0.02 for liver division and 0.916 ± 0.18 for tumor division. The use of CoordConv layers improves the segmentation accuracy. The highest of the most recently published values were 0.960 and 0.749 for liver and tumor division, respectively. However, better performance was achieved with 0.989 and 0.937 results for liver and tumor, which would have been used with the algorithm proposed in this study. The algorithm proposed in this study can play a useful role in treatment planning by improving contouring accuracy and reducing time when segmentation evaluation of liver and tumor is performed. And accurate identification of liver anatomy in medical imaging applications, such as surgical planning, as well as radiotherapy, which can leverage the findings of this study, can help clinical evaluation of the risks and benefits of liver intervention.

Inference of the Probability Distribution of Phase Difference and the Path Duration of Ground Motion from Markov Envelope (Markov Envelope를 이용한 지진동의 위상차 확률분포와 전파지연시간의 추정)

  • Choi, Hang;Yoon, Byung-Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.191-202
    • /
    • 2022
  • Markov envelope as a theoretical solution of the parabolic wave equation with Markov approximation for the von Kármán type random medium is studied and approximated with the convolution of two probability density functions (pdf) of normal and gamma distributions considering the previous studies on the applications of Radiative Transfer Theory (RTT) and the analysis results of earthquake records. Through the approximation with gamma pdf, the constant shape parameter of 2 was determined regardless of the source distance ro. This finding means that the scattering process has the property of an inhomogeneous single-scattering Poisson process, unlike the previous studies, which resulted in a homogeneous multiple-scattering Poisson process. Approximated Markov envelope can be treated as the normalized mean square (MS) envelope for ground acceleration because of the flat source Fourier spectrum. Based on such characteristics, the path duration is estimated from the approximated MS envelope and compared to the empirical formula derived by Boore and Thompson. The results clearly show that the path duration increases proportionately to ro1/2-ro2, and the peak value of the RMS envelope is attenuated by exp (-0.0033ro), excluding the geometrical attenuation. The attenuation slope for ro≤100 km is quite similar to that of effective attenuation for shallow crustal earthquakes, and it may be difficult to distinguish the contribution of intrinsic attenuation from effective attenuation. Slowly varying dispersive delay, also called the medium effect, represented by regular pdf, governs the path duration for the source distance shorter than 100 km. Moreover, the diffraction term, also called the distance effect because of scattering, fully controls the path duration beyond the source distance of 300 km and has a steep gradient compared to the medium effect. Source distance 100-300 km is a transition range of the path duration governing effect from random medium to distance. This means that the scattering may not be the prime cause of peak attenuation and envelope broadening for the source distance of less than 200 km. Furthermore, it is also shown that normal distribution is appropriate for the probability distribution of phase difference, as asserted in the previous studies.

Retrospective analysis of the urban inundation and the impact assessment of the flood barrier using H12 model (H12 모형을 이용한 도시침수원인 및 침수방어벽의 효과 분석)

  • Kim, Bomi;Noh, Seong Jin;Lee, Seungsoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.5
    • /
    • pp.345-356
    • /
    • 2022
  • A severe flooding occured at a small urban catchment in Daejeon-si South Korea on July 30, 2020 causing significant loss of property (inundated 78 vehicles and two apartments) and life (one casualty and 56 victims). In this study, a retrospective analysis of the inundation event was implemented using a physically-based urban flood model, H12 with high-resolution data. H12 is an integrated 1-dimensional sewer network and 2-dimensional surface flow model supported by hybrid parallel techniques to efficiently deal with high-resolution data. In addition, we evaluated the impact of the flooding barriers which were installed after the flood disaster. As a result, it was found that the inundation was affected by a combination of multiple components including the shape of the basin, the low terrain of the inundation area located in the downstream part of the basin, and lack of pipe capacity to drain discharge from the upstream during heavy rain. The impact of the flooding barriers was analyzed by modeling with and without barriers on the high-resolution terrain input data. It was evaluated that the flood barriers effectively lower the water depth in the apartment complex. This study demonstrates capability of high-resolution physically-based urban modeling to quantitatively assess the past inundation event and the impact of the reduction measures.

A study on the cold forging die geometry optimal design for forging load reduction (성형하중 감소를 위한 냉간단조금형 최적설계에 관한 연구)

  • Hwang, Joon;Lee, Seung-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.6
    • /
    • pp.251-261
    • /
    • 2022
  • This paper describes the finite element analysis and die design change of spring retainer forging process to reduce the cold forging load and plastic forming stress concentration. Plastic deformation analysis was carried out in order to understand the forming process of workpieces and elastic stress analysis of the die set was performed in order to get basic data for the die fatigue life estimation. Cold forging die design was set up to each process with different four types analysis progressing, the upper and lower dies shapes with combination of fillets and chamfers shapes of cold forging dies. This study suggested optimal cold forging die geometry to reduce cold forging load. The design parameters of fillets and chamfers are selected geometry were selected to apply optimization with the DoE (design of experiment) and Taguchi method. DoE and Taguchi method was performed to optimize the workpiece preform shape for spring retainer forging process, it was possible to expect an increase in cold forging die life due to the 20 percentage forging load reduction.

Evaluation of Flooding Characteristics of Dam Reservoir using Cumulative Flooding Area Curve (누가침수면적곡선을 이용한 댐 저수구역의 침수특성 평가)

  • Munseok Lee;Chulsang Yoo
    • Journal of Wetlands Research
    • /
    • v.25 no.1
    • /
    • pp.14-25
    • /
    • 2023
  • Floodplain in a reservoir is defined as the area naturally formed between the design flood level and the normal pool level. Located around the dam reservoir, floodplain has been damaged in many different ways including cultivation. As it is impossible to restore all the damaged floodplain at once, it is necessary to determine their order of priority. This process considers various factors, among which the flooding frequency is an important hydrologic characteristic, Different from the floodplains in a river, all the floodplains around the given dam reservoir have the same flooding frequency. To overcome this problem, this study proposes to use the cumulative flooding area curve, which represents the cumulative flooding area corresponding to the reservoir water level. Especially, this study evaluates the flooding frequency of those water levels corresponding to the cumulative flooding area of 30%, 50% and 70%. As application examples, this study considers the five restoration candidates each selected in the Andong Dam, Imha Dam, Youngju Dam and Nam river Dam of the Nakdong River Basin. As a result, the cumulative flooding area curve was found to well represent the overall shape of the floodplain (i.e., steep-to-mild slope or mild-to-steep slope). Also, the flooding frequency of those water levels corresponding to the cumulative flooding area of 30%, 50% and 70% was found to be so effective to quantify the hydrologic characteristics of a floodplain.

A Study on the Application of Lateral Earth Pressure to Earth Retaining Wall Considering Ground Characteristics in Jeju II - Case of Earth Anchor Construction - (제주 지역의 지반 특성을 고려한 흙막이벽의 측방토압 적용에 관한 연구 II -어스앵커 공법 시공 사례-)

  • Do-Hyeong Kim;Dong-Wook Lee;Seung-Hyun Kim;Kwon-Moon Ko
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • This paper describes the comparative results of measured and predicted values for the horizontal displacement of earth retaining wall based on two field cases, in order to evaluate the application of lateral earth pressure to earth retaining wall supported by earth anchor in Jeju. The prediction of lateral earth pressure acting on the earth retaining wall was performed by elasto-plastic analysis using Rankine earth pressure, Hong & Yun lateral earth pressure, Terzaghi & Peck modified lateral earth pressure, and Tschebotarioff lateral earth pressure. As a result, the predicted value of the maximum horizontal displacement for site A was about 10 to 12 times greater than the measured value, and in the case of site B, the predicted value was evaluated as about 9 to 12 times greater than the measured value. That is, both sites showed a similar increase rate in the maximum horizontal displacement by the predicted value compared to the measured value. In all field construction cases, the maximum horizontal displacement by measured values occurred in the sedimentary layer, soft rock layer, and clinker layer, and the horizontal displacement distribution was shown in a trapezoidal shape. The maximum horizontal displacement by the predicted value occurred around the clinker layer, and the horizontal displacement distribution was elliptical. In the ground with a clinker layer, the measured value showed a very different horizontal displacement tendency from the predicted value, because the clinker layer exists in the form of a rock layer and continuous layer. In other words, it is unreasonable to apply the existing prediction method, which is overestimated, because the characteristics of the earth pressure distribution in Jeju show a tendency to be quite different from the predicted earth pressure distribution. Therefore, it is necessary to conduct a research on the lateral earth pressure in the realistic Jeju that can secure more economic efficiency.

Risk Assessment of Stationary Hydrogen Refueling Station by Section in Dispenser Module (고정식 수소충전소에서의 Dispenser Module 내 구역별 위험성 평가)

  • SangJin Lim;MinGi Kim;Su Kim;YoonHo Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.76-85
    • /
    • 2023
  • Demand for hydrogen as a renewable energy resource is increasing. However, unlike conventional fossil fuels, hydrogen requires a dedicated refueling station for fuel supply. A risk assessment of hydrogen refueling stations must be undertaken to secure the infrastructure. Therefore, in this study, a risk assessment for hydrogen refueling stations was conducted through both qualitative and quantitative risk assessments. For the qualitative evaluation, the hydrogen dispenser module was evaluated as two nodes using the hazard and operability (HAZOP) analysis. The risk due to filter clogging and high-pressure accidents was evaluated to be high according to the criticality estimation matrix. For the quantitative risk assessment, the Hydrogen Korea Risk Assessment Module (Hy-KoRAM) was used to indicate the shape of the fire and the range of damage impact, and to evaluate the individual and social risks. The individual risk level was determined of to be as low as reasonably practicable (ALARP). Additional safety measures proposed include placing the hydrogen refueling station about 100m away from public facilities. The social risk level was derived as 1E-04/year, with a frequency of approximately 10 deaths, falling within the ALARP range. As a result of the qualitative and quantitative risk assessments, additional safety measures for the process and a safety improvement plan are proposed through the establishment of a restricted area near the hydrogen refueling station.

A Study on the Leaching and Recovery of Lithium by Reaction between Ferric Chloride Etching Solution and Waste Lithium Iron Phosphate Cathode Powder (폐리튬인산철 양극재 분말과 염화철 에칭액과의 반응에 의한 리튬의 침출 및 회수에 대한 연구)

  • Hee-Seon Kim;Dae-Weon Kim;Byung-Man Chae;Sang-Woo Lee
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.9-17
    • /
    • 2023
  • Efforts are currently underway to develop a method for efficiently recovering lithium from the cathode material of waste lithium iron phosphate batteries (LFP). The successful application of lithium battery recycling can address the regional ubiquity and price volatility of lithium resources, while also mitigating the environmental impact associated with both waste battery material and lithium production processes. The isomorphic substitution leaching process was used to recover lithium from spent lithium iron phosphate batteries. Lithium was leached by the isomorphic substitution of Fe2+ in LFP using a relatively inexpensive ferric chloride etching solution as a leaching agent. In the study, the leaching rate of lithium was compared using the ferric chloride etching solution at various multiples of the LFP molar ratio: 0.7, 1.0, 1.3, and 1.6 times. The highest lithium leaching rate was shown at about 98% when using 1.3 times the LFP molar ratio. Subsequently, to eliminate Fe, the leachate was treated with NaOH. The Fe-free solution was then used to synthesize lithium carbonate, and the harvested powder was characterized and validated. The surface shape and crystal phase were analyzed using SEM and XRD analysis, and impurities and purity were confirmed using ICP analysis.

Simulation of Cracking Behavior Induced by Drying Shrinkage in Fiber Reinforced Concrete Using Irregular Lattice Model (무작위 격자 모델을 이용한 파이버 보강 콘크리트의 건조수축 균열 거동 해석)

  • Kim, Kunhwi;Park, Jong Min;Bolander, John E.;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.353-359
    • /
    • 2010
  • Cementitious matrix based composites are vulnerable to the drying shrinkage crack during the curing process. In this study, the drying shrinkage induced fracture behavior of the fiber reinforced concrete is simulated and the effects of the fiber reinforcement conditions on the fracture characteristics are analysed. The numerical model is composed of conduit elements and rigid-body-spring elements on the identical irregular lattice topology, where the drying shrinkage is presented by the coupling of nonmechanical-mechanical behaviors handled by those respective element types. Semi-discrete fiber elements are applied within the rigid-body-spring network to model the fiber reinforcement. The shrinkage parameters are calibrated through the KS F 2424 free drying shrinkage test simulation and comparison of the time-shrinkage strain curves. Next, the KS F 2595 restrained drying shrinkage test is simulated for various fiber volume fractions and the numerical model is verified by comparison of the crack initiating time with the previous experimental results. In addition, the drying shrinkage cracking phenomenon is analysed with change in the length and the surface shape of the fibers, the measurement of the maximum crack width in the numerical experiment indicates the judgement of the crack controlling effect.