• Title/Summary/Keyword: Shape Effect

검색결과 5,190건 처리시간 0.03초

A new piezoelectric shell element and its application in static shape control

  • Chen, Su Huan;Yao, Guo Feng;Lian, Hua Dong
    • Structural Engineering and Mechanics
    • /
    • 제12권5호
    • /
    • pp.491-506
    • /
    • 2001
  • In this paper, a new three-dimensional piezoelectric thin shell element containing an integrated distributed piezoelectric sensor and actuator is proposed. The distributed piezoelectric sensor layer monitors the structural shape deformation due to the direct effect and the distributed actuator layer suppresses the deflection via the converse piezoelectric effect. A finite element formulation is presented for static response of laminated shell with piezoelectric sensors/actuators. An eight-node and forty-DOF shell element is built. The performance of the shell elements is improved by reduced integration technique. The static shape control of structure is derived. The shell element is verified by calculating piezoelectric polymeric PVDF bimorph beam. The results agreed with those obtained by theoretical analysis, Tzou and Tseng (1990) and Hwang and Park (1993) fairly well. At last, the static shape control of a paraboloidal antenna is presented.

유한요소 모델링을 이용한 아크 스폿 용접의 너깃 형상 예측 (Prediction of Nuggest Shape by Finite Element Modeling in Arc-spot Welding)

  • 황종근;장경복;김기순;강성수
    • Journal of Welding and Joining
    • /
    • 제17권2호
    • /
    • pp.84-90
    • /
    • 1999
  • The shape of weld nuggest in arc spot welding of 304 stainless steel was found by searching thermal history of a weld joint through a three-dimensional finite element model. The problem consists of one in which the finite element mesh is growing continuously in time in order to accomodate metal transfer in arc spot welding using element rebirth technique. The analysis was performed on the basis of experimental results. The finite element program MARC, along with a few user subroutines, was employed to obtain the numerical results. Temperature-dependent thermal properties, stir effect in weld pool, effect of phase transformation, and the convective and radiative boundary conditions are included in the model. Numerically predicted shape of weld nuggest is compared with the experimentally observed shape.

  • PDF

Seismic response control of buildings using shape memory alloys as smart material: State-of-the-Art review

  • Eswar, Moka;Chourasia, Ajay;Gopalakrishnan, N.
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.207-219
    • /
    • 2022
  • Seismic response control has always been a grave concern with the damage and collapse of many buildings during the past earthquakes. While there are several existing techniques like base isolation, viscous damper, moment-resisting beam-column connections, tuned mass damper, etc., many of these are succumbing to either of large displacement, near-fault, and long-period earthquakes. Keeping this viewpoint, extensive research on the application of smart materials for seismic response control of buildings was attempted during the last decade. Shape Memory Alloy (SMA) with its unique properties of superelasticity and shape memory effect is one of the smart materials used for seismic control of buildings. In this paper, an exhaustive review has been compiled on the seismic control applications of SMA in buildings. Unique properties of SMA are discussed in detail and different phases of SMA along with crystal characteristics are illustrated. Consequently, various seismic control applications of SMA are discussed in terms of performance and compared with prevalent base isolators, bracings, beam-column connections, and tuned mass damper systems.

형상기억효과를 가진 투과형 광탄성 실험용 모델재료 개발에 관한 연구 (A study on the development of photoelastic model material with shape memory effect)

  • 이효재;황재석
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.624-634
    • /
    • 1998
  • The photoelastic model material with shape memory effect and the molding processes for the material are developed in this research. The matrix and fiber of the photoelastic model material developed in this research are epoxy resin (Araldite to hardner 10 to 3 (weight ratio)) and wire of $Ti_50-Ni_50$ shape memory alloy, respectively. It is called Ti50-Ni50 Shape Memory Alloy Fiber Epoxy Composite $(Ti_50-Ni_50SMA-FEC).$ Ti50-Ni50 SMA-FEC is satisfied with the requirements of the photoelastic model material and can be used as a photoelastic model material. The maximum recovering strain of $Ti_50-Ni_50$SMA-FEC is occurred at $80^{\circ}C$ in any prestrain of $Ti_50-Ni_50$ shape memory alloy fiber and in any fiber volume ratio. Recovering strain(force) is increased with the increment of the prestrain and the fiber volume ratio. The best prestrain of $Ti_50-Ni_50$SMA-FEC is 5% for the recovering force among 1%, 3%, 5%.

Review of Types, Properties, and Importance of Ferrous Based Shape Memory Alloys

  • Rahman, Rana Atta Ur;Juhre, Daniel;Halle, Thorsten
    • 한국재료학회지
    • /
    • 제28권7호
    • /
    • pp.381-390
    • /
    • 2018
  • Shape memory alloys(SMAs) have revolutionized the material engineering sciences as they exhibit exclusive features i.e. shape memory effect(SME) and super-elasticity. SMAs are those alloys that when deform return to their predeformed shape upon heating, they also restore their original shape by removing the load. Research on properties of newly advent of several types of ferrous based shape memory alloys(Fe-SMAs), shows that they have immense potential to be the counterpart of Nitinol(NiTi-SMA). These Fe-SMAs have been used and found to be effective because of their low cost, high cold workability, good weldability & excellent characteristics comparing with Nitinol(high processing cost and low cold workability) SMAs. Some of the Fe-SMAs show super-elasticity. Fe-SMAs, especially Fe-Mn-Si alloys have an immense potential for civil engineering structures because of its unique properties e.g. two-way shape memory effect, super elasticity and shape memory effect as well as due to its low cost, high elastic stiffness and wide transformation hysteresis comparative to Nitinol. Further research is being conducted on SMAs to improve and impinge better attributes by improving the material compositions, quantifying the SMA phase transition temperature etc. In this research pre-existing Fe-SMAs are categorised and collected in a tabulated form. An analysis is performed that which category is mostly available. Last 50 years data of Fe-SMA publications and US Patents is collected to show its importance in terms of increasing research on such type of alloys to invent different compositions and applications. This data is analysed as per different year groups during last 50 years and it was analysed as per whether the keywords exist in title of an article or anywhere in the article. It was found that different keywords related to Fe-SMAs/categories of Fe-SMAs, almost don't exist in the title of articles. However, these keywords related to Fe-SMAs/categories of Fe-SMAs, exist inside the article but still there are not too many publications related to Fe-SMAs/categories of Fe-SMAs.

유한요소법을 이용한 TiNi/A16061 형상기억 복합재료의 강도평가 (The Strength Evaluation of TiNi/A16061 Composite by Using Finite Element Method)

  • 박영철;이규창;박동성;이동화
    • 한국정밀공학회지
    • /
    • 제19권2호
    • /
    • pp.72-78
    • /
    • 2002
  • Thermomechanical behavior and mechanical properties of A16061 matrix composite with shape memory alloy(SMA) fiber are studied by using fnite element analysis(FEA). The smartness of the SMA is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when healed after being prestrained. In this paper, an analytical model is assumed two dimentional axisymetric model of one fiber and around the matrix. To evaluate the strength of composite usig FEM, the concept of smart composite was simulated on computer. The Shape memory effect(SME) simulation is very difficult using FEM because of the nonlinear analysis and the elastic plastic analysis. Thus, in this paper, the FEA was carried out at two critical temperature conditions; room temperature and high temperature(363K). The analysis is compare the finite element analysis result with the test result for the analysis validity.

TIG 용접에서 열유속이 용융효율과 용입형상에 미치는 영향 (Effect of Heat Flux on the Melting Efficiency and Penetration Shape in TIG Welding)

  • 오동수;조상명
    • Journal of Welding and Joining
    • /
    • 제27권2호
    • /
    • pp.44-50
    • /
    • 2009
  • The characteristics of arc pressure, current density and heat flux distribution are important factors in understanding physical arc phenomena, which will have a marked effect on the penetration, size and shape of a weld in TIG welding. The purpose of this study is to find out the effect of the heat flux on the melting efficiency and penetration shape in TIG welding using the results of the previous investigators. The conclusions obtained permit to draw a proper method which derived the heat flux distributions by arc pressure distribution measurements, but previous researchers calculated heat flux and current distribution with the heat intensity measurements by the calorimetry. Heat flux of Ar gas arc was concentrated at the central part and distributed low from the arc axis to the radial direction, that of He mixing arc was lower than that of Ar gas, and it was wide distributed to radial direction. That showed a similar characteristic with the Nestor's by calorimetry calculated values. Throughout heat flux drawn in this study was discussed melting efficiency and penetration shape on Ar gas and He mixing gas arc.

고강도 열연재의 홀 플랜징시 립 형상이 플랜정성에 미치는 효과 (Effect of Lip Shape on the Hole Flangeability of High Strength Steel Sheets)

  • 김정운;김봉준;문영훈
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.147-152
    • /
    • 2002
  • Effect of lip shape on the hole flangeability of high strength steel sheets is investigated. Circular plates of various hole sizes are tested and the variation of lip length as well as the variation of thickness on the sectional views of the finished lip were studied. The conventional hole flanging process is limited to a certain limit hole diameter below which failure will ensue during the hole expansion. The intention of this work is to examine the effect of lip shape on the flangeability of TRIP steel and Ferrite-Bainite duplex steel and find out major parameters which can affect flanging shape of high strength hot rolled steels. Over the ranges of conditions investigated, the minimum hole diameter of F+B steel is better than TRIP steel. while, the lip-shape accuracy of TRIP steel is better than that of F+B steel. although the tensile strength and elongation of %P steel are superior than those of Ferrite-Bainite duplex steel, the flangeability is found to be not so strongly sensitive to the tensile properties but sensitive to displacement on the circumferential direction of hole edge.

Ti-Ni형상기억합금의 생체활성에 미치는 표면처리의 영향 (Effect of Surface Treatment on Bioactivity of Ti-Ni Shape Memory Alloys)

  • 최미선;남태현
    • 대한금속재료학회지
    • /
    • 제47권12호
    • /
    • pp.881-886
    • /
    • 2009
  • Research into the replacement of injured systems and tissue in the human body is advancing rapidly. Recently, Ti-Ni shape memory alloys have shown excellent biofunctionality related to their shape memory effect and superelasticity. In this study, the effect of an acid or an alkali treatment on the bioactivity in 49Ti-Ni and 51.5Ti-48.5Ni alloys is investigated in an effort to utilize Ti-Ni alloy as a biomaterial. In addition, the biocompatibility in a SBF solution is assessed through in vitro testing. A porous surface was formed on the surface of both alloys after a chemical treatment. According to the in vitro test, apatite formed on the surfaces of both alloys. The forming rate of apatite in the Ti-rich alloy was faster that in the Ni-rich alloy. The formation of apatite provided proof of the bioactivity of the Ti-Ni alloy. A small quantity of Ni was eluted at the initial stage, whereas Ni was not found for 12 days in the Ti-rich alloy and for 8 days in the Ni-rich alloy. In the case of the treated 51.5Ti-Ni alloy, the shape memory property was worsened but the biocompatibility was improved.

형상기억입자 강화 복합체의 탄성계수 평가 (Evaluation of Elastic Modulus in a Particulate Reinforced Composite by Shape Memory Effect)

  • 김홍건
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.25-31
    • /
    • 2001
  • The theoretical modeling to predict the modulus of elasticity by the shape memory effect of dispersed particles in a metal matrix composite was studied. The modeling approach is based on the Eshelbys equivalent inclusion method and Mori-Tanakas mean field theory. The calculation was performed on the TiNi particle dispersed Al metal matrix composites(PDMMC) with varying volume fractions and prestrains of the particle. It was found that the prestrain has no effect on the Yonugs modulus of PDMMC but the volume fraction does affects it. This approach has an advantage of definite control of Youngs modulus in PDMMCs.