• Title/Summary/Keyword: Shape Design Method

Search Result 3,033, Processing Time 0.029 seconds

Development of Optimal Blank Shape Design Program Using the Initial Velocity of Boundary Nodes (초기 속도법을 이용한 최적 블랭크 설계 프로그램의 개발)

  • 심현보;이상헌;손기찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.77-81
    • /
    • 2002
  • A new method of optimal blank shape design using the initial nodal velocity (INOV) has been proposed for the drawings of arbitrary shaped cups. With the given information of tool shape and the final product shape, corresponding initial blank shape has been found from the motion of boundary nodes. Although the sensitivity method, the past work of Hynbo Shim and Kichan Son, has been proved to be excellent method to find optimal blank shapes, the method has a problem that a couple of deformation analysis is required at each design step and it also exhibits an abnormal behaviors in the rigid body rotation prevailing region. In the present method INOV, only a single deformation analysis per each design stage is required. Drawings of practical products as well as oil-pan have been chosen as the examples. At every case the optimal blank shapes have been obtained only after a few times of modification without predetermined deformation path. The deformed shape with predicted optimal blank almost coincides with the target shape at every case. Through the investigation the INOV is found to be very effective in the arbitrary shaped drawing process design.

  • PDF

Development of Optimal Blank Shape Design Program Using the Initial Velocity of Boundary Nodes (초기 속도법을 이용한 최적 블랭크 설계 프로그램의 개발)

  • 심현보;이상헌;손기찬
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.487-494
    • /
    • 2002
  • A new method of optimal blank shape design using the initial nodal velocity (INOV) has been proposed for the drawings of arbitrary shaped cups. With the given information of tool shape and the final product shape, corresponding initial blank shape has been found from the motion of boundary nodes. Although the sensitivity method, the past work of the present authors, has been proved to be excellent method to find optimal blank shapes, the method has a problem that a couple of deformation analysis is required at each design step and it also exhibits an abnormal behaviors in the rigid body rotation prevailing region. In the present method INOV, only a single deformation analysis per each design stage is required. Drawings of practical products as well as oil-pan, have been chosen as the examples. At every case the optimal blank shapes have been obtained only after a few times of modification without predetermined deformation path. The deformed shape with predicted optimal blank almost coincides with the target shape at every case. Through the investigation the INOV is found to be very effective in the arbitrary shaped drawing process design.

Application of the Growth-Strain Method for Shape Optimal Design of a Flow System (유동 시스템의 형상 최적 설계를 위한 성장-변형률법의 적용)

  • Han, Seog-Young;Lee, Sang-Hwan;Kim, Jong-Pill;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.945-950
    • /
    • 2002
  • Shape optimization of a flow system is done to obtain the required effects, in the engineering fields. Most of these designs are accomplished by empirical or numerical analysis. In empirical analysis, it is difficult to obtain an optimal shape in the feasible design region. And, in numerical method, it usually needs much calculation expenses for shape optimization, because of design sensitivity analysis. In this study, we used the growth-strain method having only one distributed parameter such as a design variable. It optimizes a shape by making a distributed parameter such as dissipation energy uniform in a flow system, and then applied to two-flow systems. In order to overcome the stability occurred in numerical analysis performed by Azegami, the equation of volumic strain has been modified. Also, the shapes were compared with the known optimal shapes for the flow systems. Consequently, we confirm that the modified growth-strain method is very efficient and practical in shape optimization of the flow systems.

Study on the Design Method for the Train Nose Shape Using the Configuration Function (형상함수를 이용한 열차 전두부 설계기법 연구)

  • Ku, Yo-Cheon;Rho, Joo-Hyun;Yun, Su-Hwan;Kwak, Min-Ho;Lee, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2218-2223
    • /
    • 2008
  • A nose shape is strongly related with the aerodynamic performances of train. Therefore shape definition and aerodynamic performance analysis are important for train nose shape design. In this study, a new design method was suggested for train nose shape design by configuration function. To this end, the nose shape was classified by box type and each box shape is defined. After that the 3-D shape of train was defined as several mathematical functions by combination of each box shape. Also it was shown that the wind shield of driver's seat and complex curves of surface can be expressed using superposition of functions. This methodology can be used for grid generation of numerical analysis, and applied to aerodynamic optimization design of nose shape.

  • PDF

Boundary Method for Shape Design Sensitivity Analysis in Solving Free-Surface Flow Problems

  • Choi Joo Ho;Kwak H. G.;Grandhi R. V.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2231-2244
    • /
    • 2005
  • An efficient boundary-based optimization technique is applied in the numerical computation of free surface flow problems, by reformulating them into the equivalent optimal shape design problems. While the sensitivity in the boundary method has mainly been calculated using the boundary element method (BEM) as an analysis means, the finite element method (FEM) is used in this study because of its popularity and easy-to-use features. The advantage of boundary method is that the design velocity vectors are needed only on the boundary, not over the whole domain. As such, a determination of the complicated domain design velocity field, which is necessary in the domain method, is eliminated, thereby making the process easy to implement and efficient. Seepage and supercavitating flow problem are chosen to illustrate the accuracy and effectiveness of the proposed method.

Design Method for the Intermediate Dies in Multi-Stage Shape Drawing: The Case for a Hollow Linear Motion Guide Rail (중공형 LM-Guide Rail 제조를 위한 다단 형상 인발공정의 중간 다이스 설계에 관한 연구)

  • Lee, K.H.;Kim, S.H.;Lee, S.B.;Kim, D.H.;Kim, S.M.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.155-160
    • /
    • 2015
  • One of the most important aspects in multi-stage shape drawing is the proper design of the intermediate dies especially to provide adequate metal distribution. In the current study, a method for designing the intermediate dies has been developed to manufacture hollow linear motion guide rails by multi-stage shape drawing. The design method is based on the modified virtual die method. The effectiveness of the proposed design method was verified by FE-simulations and experiments using Mn55Cr carbon steel. From the results of the FE-simulations and the experiments, the proposed design method led to a drawn product with a sound shape. The dimensional tolerances of the product were within the allowable specified tolerances.

A Study on the Optimal Design for Aluminum Boom Shape in High Ladder Vehicles (고가사다리차의 알루미늄 붐 형상의 최적설계에 관한 연구)

  • Kim, Hong-Gun;Nah, Seok-Chan;Hong, Dong-Pyo;Cho, Nam-Ik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.96-102
    • /
    • 2007
  • An Optimal shape design of the boom system in high ladder vehicles is performed using 3-D finite element method (FEM). Results of structural analyses providing displacements, stresses are implemented for the optimum shape design. Lanzcos algorithm is used for the modal analysis in order to find natural frequencies. The optimal shape including cross sectional thickness and length of the boom system is controlled by the subproblem method besed on displacement and Von Mises stress. It is found that a plenty of materials can be saved by using shape design optimization in high ladder vehicles. It is also found that the natural frequency is increased until 6th mode and maintained similarly or decreased after 6th mode.

A study on relative velocity approach for shape desing to cylindrical cam with rotating roller follower on faced-vertical axes (직교축상의 회전운동용 롤러 종동절을 수반하는 원통형 캠의 형상설계를 위한 상대속도법에 관한 연구)

  • 김성원;신중호;강동우;장세원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.612-615
    • /
    • 2000
  • Cam mechanism is one of the common devices used in many automatic machinery. Specially cylindrical cam generates three dimensional motions. Thus, the shape design procedures must have high accuracy. This paper proposes the shape design procedure for a cylindrical cam and follower mechanism using a relative velocity method. The relative velocity method and the coordinate transformation are used to find a contact point between the cam and the follower. Also, the full shape of the cylindrical cam can be generated by using the geometric relationships and the contact constraints. As a result, this paper presents an example for the shape design of the cylindrical cam in order to prove the accuracy of the design procedures.

  • PDF

The Role of S-Shape Mapping Functions in the SIMP Approach for Topology Optimization

  • Yoon, Gil-Ho;Kim, Yoon-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1496-1506
    • /
    • 2003
  • The SIMP (solid isotropic material with penalization) approach is perhaps the most popular density variable relaxation method in topology optimization. This method has been very successful in many applications, but the optimization solution convergence can be improved when new variables, not the direct density variables, are used as the design variables. In this work, we newly propose S-shape functions mapping the original density variables nonlinearly to new design variables. The main role of S-shape function is to push intermediate densities to either lower or upper bounds. In particular, this method works well with nonlinear mathematical programming methods. A method of feasible directions is chosen as a nonlinear mathematical programming method in order to show the effects of the S-shape scaling function on the solution convergence.

Method of Shape Error Measurement for the Optimal Blank Design of Shapes with 3D Contour Lines (목표윤곽선이 3 차원 곡선인 형상의 최적블랭크 설계를 위한 형상오차 측정법)

  • Shim, H.B.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.28-36
    • /
    • 2015
  • After a short review of the iterative optimal blank method, a new method of measuring the shape error for stamped parts with 3D contour lines, which is an essential component of the optimal blank design, is proposed. When the contour line of the target shape does not exist in a plane, but exists in 3D space, especially when the shape of the target contour line is very complicated as in the real automotive parts, then the measurement of the shape error is critical. In the current study, a method of shape error measurement based on the minimum distance is suggested as an evolution of the radius vector method. With the proposed method, the optimal blank shapes of real automotive parts were found and compared to the results of the radius vector method. From the current investigation the new method is found to resolve the issues with the radius vector method.