• 제목/요약/키워드: Shape Based Registration

검색결과 44건 처리시간 0.029초

인공무릎관절 수술에서의 영역기반 ICP 알고리즘 (Region-based ICP algorithm in TKR operation)

  • 기재홍;이문규;이창양;김동민;유선국;최귀원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.185-186
    • /
    • 2006
  • Image Guided Surgery(IGS) system has been developed to provide exquisite and objective information to surgeons for surgical operation process. It is necessary that registration technique is important to match between 3D image model reconstructed from image modalities and the object operated by surgeon. Majority techniques of registration in IGS system have been used by recognizing fiducial markers placed on the object. However, this method has been criticized due to its invasive protocol inserting fiducial markers in patient's bone. Therefore, shape-based registration technique using geometric characteristics of the object has been invested to improve the limitation of IGS system. During Total Knee Replacement(TKR) operation, it is challenge to register with high accuracy by using shape-based registration because the area to acquire sample data from knee is limited. We have developed region-based 3D registration technique based on anatomical landmarks on the object and this registration algorithm was evaluated in femur model. It was found that region-based algorithm can improve the accuracy in 3D registration. We expect that this technique can efficiently improve the IGS system.

  • PDF

다차원 척도법(MDS)을 사용한 새로운 형태 정량화 기법 (A Novel Method of Shape Quantification using Multidimensional Scaling)

  • 박현진;윤의중;서종범
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권2호
    • /
    • pp.134-140
    • /
    • 2010
  • Readily available high resolution brain MRI scans allow detailed visualization of the brain structures. Researchers have focused on developing methods to quantify shape differences specific to diseased scans. We have developed a novel method to quantify shape information for a specific population based on Multidimensional scaling(MDS). MDS is a well known tool in statistics and here we apply this classical tool to quantify shape change. Distance measures are required in MDS which are computed from pair-wise image registrations of the training set. Registration step establishes spatial correspondence among scans so that they can be compared in the same spatial framework. One benefit of our method is that it is quite robust to errors in registrations. Applying our method to 13 brain MRI showed clear separation between normal and diseased (Cushing's syndrome). Intentionally perturbing the image registration results did not significantly affect the separability of two clusters. We have developed a novel method to quantify shape based on MDS, which is robust to image mis-registration.

선박 외판 성형에서 목적 형상과 전개 평판의 최적 정합을 위한 ICP(Iterative Closest Point) 알고리즘 적용 (Application of ICP(Iterative Closest Point) Algorithm for Optimized Registration of Object Surface and Unfolding Surface in Ship-Hull Plate Forming)

  • 이장현;윤종성;류철호;이황범
    • 한국CDE학회논문집
    • /
    • 제14권2호
    • /
    • pp.129-136
    • /
    • 2009
  • Generally, curved surfaces of ship hull are deformed by flame bending (line heating), multi-press forming, and die-less forming method. The forming methods generate the required in-plane/bending strain or displacement on the flat plate to make the curved surface. Multi-press forming imposes the forced displacements on the flat plate by controlling the position of each pressing points based upon the shape difference between the unfolded flat plate and the curved object shape. The flat plate has been obtained from the unfolding system that is independent of the ship CAD. Apparently, the curved surface and the unfolded-flat surface are expressed by different coordinate systems. Therefore, one of the issues is to find a registration of the unfolded surface and the curved shape for the purpose of minimum amount of forming works by comparing the two surfaces. This paper presents an efficient algorithm to get an optimized registration of two different surfaces in the multi-press forming of ship hull plate forming. The algorithm is based upon the ICP (Iterative Closest Point) algorithm. The algorithm consists of two iterative procedures including a transformation matrix and the closest points to minimize the distance between the unfolded surface and curved surfaces. Thereby the algorithm allows the minimized forming works in ship-hull forming.

현미경 섹션 영상으로부터 3차원 형상 복구 기법 (3D Shape Reconstruction from Microscopic Serial Section Images)

  • 윤일동;이후성
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2379-2382
    • /
    • 2003
  • This paper describes the design, implementation and results of a unified non-rigid image registration method for the purposes of 3D shape reconstruction from serial section images. The proposed method uses active contour-based segmentation and compensation of radial distortion. Experimental results show that multiple images can be segmented and reconstructed by active single contour as well as intra- and inter-section registration.

  • PDF

전슬관절치환술을 위한 3차원 영역기반 영상정합 기술 (Region-Based 3D Image Registration Technique for TKR)

  • 기재홍;서덕찬;박흥석;윤인찬;이문규;유선국;최귀원
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권6호
    • /
    • pp.392-401
    • /
    • 2006
  • Image Guided Surgery (IGS) system which has variously tried in medical engineering fields is able to give a surgeon objective information of operation process like decision making and surgical planning. This information is displayed through 3D images which are acquired from image modalities like CT and MRI for pre-operation. The technique of image registration is necessary to construct IGS system. Image registration means that 3D model and the object operated by a surgeon are matched on the common frame. Major techniques of registration in IGS system have been used by recognizing fiducial markers placed on the object. However, this method has been criticized due to additional trauma, its invasive protocol inserting fiducial markers in patient's bone and generating noise data when 2D slice images are acquired by image modality because many markers are made of metal. Therefore, this paper developed shape-based registration technique to improve the limitation of fiducial marker based IGS system. Iterative Closest Points (ICP) algorithm was used to match corresponding points and quaternion based rotation and translation transformation using closed form solution applied to find the optimized cost function of transformation. we assumed that this algorithm were used in Total Knee replacement (TKR) operation. Accordingly, we have developed region-based 3D registration technique based on anatomical landmarks and this registration algorithm was evaluated in a femur model. It was found that region-based algorithm can improve the accuracy in 3D registration.

한글 글꼴 등록 시스템을 위한 글꼴 모양 분류체계 표준화 연구 (Standardization Study of Font Shape Classification for Hangul Font Registration System)

  • 김현영;임순범
    • 한국멀티미디어학회논문지
    • /
    • 제20권3호
    • /
    • pp.571-580
    • /
    • 2017
  • Recently, there are many communication softwares based on text on various smart devices. Unlike traditional print publishing, mobile publishing and SNS tools tends to utilize more decorative or more emotional fonts so that users can pass some feelings from contents. So font providers have released new fonts which deal with the requirements of the market. Nevertheless being released lots of new fonts, general users have not used them because they searched only by font name or font provider's name. It means that there is no way for users to know and find new things. In this study, we suggest font shape classification rules for font registration system based on font design features. We proved the validity of classification standard study through some experiments with 50 commercial fonts. Also the result of this study was provided for Korea Telecommunication Technology Association and adopted by the Korea industrial standard.

Accuracy of the Point-Based Image Registration Method in Integrating Radiographic and Optical Scan Images: A Pilot Study

  • Mai, Hai Yen;Lee, Du-Hyeong
    • Journal of Korean Dental Science
    • /
    • 제13권1호
    • /
    • pp.28-34
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the influence of different implant computer software on the accuracy of image registration between radiographic and optical scan data. Materials and Methods: Cone-beam computed tomography and optical scan data of a partially edentulous jaw were collected and transferred to three different computer softwares: Blue Sky Plan (Blue Sky Bio), Implant Studio (3M Shape), and Geomagic DesignX (3D systems). In each software, the two image sets were aligned using a point-based automatic image registration algorithm. Image matching error was evaluated by measuring the linear discrepancies between the two images at the anterior and posterior area in the direction of the x-, y-, and z-axes. Kruskal-Wallis test and a post hoc Mann-Whitney U-test with Bonferroni correction were used for statistical analyses. The significance level was set at 0.05. Result: Overall discrepancy values ranged from 0.08 to 0.30 ㎛. The image registration accuracy among the software was significantly different in the x- and z-axes (P=0.009 and <0.001, respectively), but not different in the y-axis (P=0.064). Conclusion: The image registration accuracy performed by a point-based automatic image matching could be different depending on the computer software used.

복부 컴퓨터 단층촬영영상에서 다중 확률 아틀라스 기반 형상제한 그래프-컷을 사용한 신실질 자동 분할 (Automatic Segmentation of Renal Parenchyma using Graph-cuts with Shape Constraint based on Multi-probabilistic Atlas in Abdominal CT Images)

  • 이재선;홍헬렌;나군호
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제22권4호
    • /
    • pp.11-19
    • /
    • 2016
  • 본 논문에서는 복부 CT 영상에서 다중 확률 아틀라스 기반 형상제한 그래프-컷을 사용한 신실질 자동 분할 방법을 제안한다. 제안 방법은 다음의 세 단계로 구성된다. 첫째, 신실질의 다양한 형상정보를 이용하기 위해 피질기반 유사정합을 통한 다중 확률 아틀라스를 생성한다. 둘째, 최대사후확률 추정을 통해 그래프-컷의 초기 씨앗을 추출하고, 형상제한 그래프-컷을 통해 신실질을 분할한다. 셋째, 확률 아틀라스의 정합 오차를 줄이고 분할 정확도를 높이기 위해, 정합 및 분할을 반복적으로 수행한다. 제안방법의 성능을 평가하기 위해 정성적 평가 및 정량적 평가를 수행하였다. 실험결과 제안방법이 신실질과 유사한 밝기값을 갖는 주변 영역으로의 누출을 방지하여 개선된 분할 정확도를 보여준다.

Abdominal-Deformation Measurement for a Shape-Flexible Mannequin Using the 3D Digital Image Correlation

  • Liu, Huan;Hao, Kuangrong;Ding, Yongsheng
    • Journal of Computing Science and Engineering
    • /
    • 제11권3호
    • /
    • pp.79-91
    • /
    • 2017
  • In this paper, the abdominal-deformation measurement scheme is conducted on a shape-flexible mannequin using the DIC technique in a stereo-vision system. Firstly, during the integer-pixel displacement search, a novel fractal dimension based on an adaptive-ellipse subset area is developed to track an integer pixel between the reference and deformed images. Secondly, at the subpixel registration, a new mutual-learning adaptive particle swarm optimization (MLADPSO) algorithm is employed to locate the subpixel precisely. Dynamic adjustments of the particle flight velocities that are according to the deformation extent of each interest point are utilized for enhancing the accuracy of the subpixel registration. A test is performed on the abdominal-deformation measurement of the shape-flexible mannequin. The experiment results indicate that under the guarantee of its measurement accuracy without the cause of any loss, the time-consumption of the proposed scheme is significantly more efficient than that of the conventional method, particularly in the case of a large number of interest points.

술자의 영상정합의 경험이 컴퓨터 단층촬영과 광학스캔 영상 간의 정합 정확성과 작업시간에 미치는 영향 (Effect of image matching experience on the accuracy and working time for 3D image registration between radiographic and optical scan images)

  • 마이항나;이두형
    • 대한치과보철학회지
    • /
    • 제59권3호
    • /
    • pp.299-304
    • /
    • 2021
  • 목적: 본 연구의 목적은 컴퓨터 단층촬영과 광학스캔 영상의 정합에서 술자의 경험이 정합의 정확성과 소요시간에 미치는 영향을 조사하는 것이다. 재료 및 방법: 치아결손이 없은 성인 악궁의 컴퓨터 단층촬영과 광학스캔 영상(IDC S1, Amann Girrbach, Koblah, Austria)이 수집되었다. 두 영상간의 영상정합이 임플란트 진단 소프트웨어(Implant Studio, 3Shape, Copenhagen, Denmark)에서 점 기반 자동매칭 방식으로 행해졌다. 영상정합 경험자 군과 미경험자 군으로 나누어 진행되었으며 작업시간이 기록되었다(군당 15명). 각 군의 영상 정합 정확성은 구치부에서의 선형 오차값으로 측정되었다. 정확성 값과 작성시간의 통계적 비교 분석을 위해 유의수준 0.05에서 독립표본 t검정이 이용되었다. 결과: 영상정합의 선형오차값은 경험자 군과 미경험자 군 간에 통계적인 차이가 없었다. 영상정합에 소요한 시간은 경험자 군이 미경험자 군에 비해 유의하게 짧았다(P = .007). 결론: 술자의 영상정합의 경험의 차이는 점 기반 자동정합이 사용된 경우 정합 정확성에 유의한 영향을 미치지 않는 것으로 보인다. 경험자에서 정합에 소요된 시간은 짧았다.