• Title/Summary/Keyword: Shape Based Registration

Search Result 43, Processing Time 0.023 seconds

Region-based ICP algorithm in TKR operation (인공무릎관절 수술에서의 영역기반 ICP 알고리즘)

  • Key Jae-Hong;Lee Moon-Kyu;Lee Chang-Yang;Kim Dong-M.;Yoo Sun-K.;Choi Kui-Won
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.185-186
    • /
    • 2006
  • Image Guided Surgery(IGS) system has been developed to provide exquisite and objective information to surgeons for surgical operation process. It is necessary that registration technique is important to match between 3D image model reconstructed from image modalities and the object operated by surgeon. Majority techniques of registration in IGS system have been used by recognizing fiducial markers placed on the object. However, this method has been criticized due to its invasive protocol inserting fiducial markers in patient's bone. Therefore, shape-based registration technique using geometric characteristics of the object has been invested to improve the limitation of IGS system. During Total Knee Replacement(TKR) operation, it is challenge to register with high accuracy by using shape-based registration because the area to acquire sample data from knee is limited. We have developed region-based 3D registration technique based on anatomical landmarks on the object and this registration algorithm was evaluated in femur model. It was found that region-based algorithm can improve the accuracy in 3D registration. We expect that this technique can efficiently improve the IGS system.

  • PDF

A Novel Method of Shape Quantification using Multidimensional Scaling (다차원 척도법(MDS)을 사용한 새로운 형태 정량화 기법)

  • Park, Hyun-Jin;Yoon, Uei-Joong;Seo, Jong-Bum
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.134-140
    • /
    • 2010
  • Readily available high resolution brain MRI scans allow detailed visualization of the brain structures. Researchers have focused on developing methods to quantify shape differences specific to diseased scans. We have developed a novel method to quantify shape information for a specific population based on Multidimensional scaling(MDS). MDS is a well known tool in statistics and here we apply this classical tool to quantify shape change. Distance measures are required in MDS which are computed from pair-wise image registrations of the training set. Registration step establishes spatial correspondence among scans so that they can be compared in the same spatial framework. One benefit of our method is that it is quite robust to errors in registrations. Applying our method to 13 brain MRI showed clear separation between normal and diseased (Cushing's syndrome). Intentionally perturbing the image registration results did not significantly affect the separability of two clusters. We have developed a novel method to quantify shape based on MDS, which is robust to image mis-registration.

Application of ICP(Iterative Closest Point) Algorithm for Optimized Registration of Object Surface and Unfolding Surface in Ship-Hull Plate Forming (선박 외판 성형에서 목적 형상과 전개 평판의 최적 정합을 위한 ICP(Iterative Closest Point) 알고리즘 적용)

  • Lee, Jang-Hyun;Yoon, Jong-Sung;Ryu, Cheol-Ho;Lee, Hwang-Beom
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.2
    • /
    • pp.129-136
    • /
    • 2009
  • Generally, curved surfaces of ship hull are deformed by flame bending (line heating), multi-press forming, and die-less forming method. The forming methods generate the required in-plane/bending strain or displacement on the flat plate to make the curved surface. Multi-press forming imposes the forced displacements on the flat plate by controlling the position of each pressing points based upon the shape difference between the unfolded flat plate and the curved object shape. The flat plate has been obtained from the unfolding system that is independent of the ship CAD. Apparently, the curved surface and the unfolded-flat surface are expressed by different coordinate systems. Therefore, one of the issues is to find a registration of the unfolded surface and the curved shape for the purpose of minimum amount of forming works by comparing the two surfaces. This paper presents an efficient algorithm to get an optimized registration of two different surfaces in the multi-press forming of ship hull plate forming. The algorithm is based upon the ICP (Iterative Closest Point) algorithm. The algorithm consists of two iterative procedures including a transformation matrix and the closest points to minimize the distance between the unfolded surface and curved surfaces. Thereby the algorithm allows the minimized forming works in ship-hull forming.

3D Shape Reconstruction from Microscopic Serial Section Images (현미경 섹션 영상으로부터 3차원 형상 복구 기법)

  • 윤일동;이후성
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2379-2382
    • /
    • 2003
  • This paper describes the design, implementation and results of a unified non-rigid image registration method for the purposes of 3D shape reconstruction from serial section images. The proposed method uses active contour-based segmentation and compensation of radial distortion. Experimental results show that multiple images can be segmented and reconstructed by active single contour as well as intra- and inter-section registration.

  • PDF

Region-Based 3D Image Registration Technique for TKR (전슬관절치환술을 위한 3차원 영역기반 영상정합 기술)

  • Key, J.H.;Seo, D.C.;Park, H.S.;Youn, I.C.;Lee, M.K.;Yoo, S.K.;Choi, K.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.392-401
    • /
    • 2006
  • Image Guided Surgery (IGS) system which has variously tried in medical engineering fields is able to give a surgeon objective information of operation process like decision making and surgical planning. This information is displayed through 3D images which are acquired from image modalities like CT and MRI for pre-operation. The technique of image registration is necessary to construct IGS system. Image registration means that 3D model and the object operated by a surgeon are matched on the common frame. Major techniques of registration in IGS system have been used by recognizing fiducial markers placed on the object. However, this method has been criticized due to additional trauma, its invasive protocol inserting fiducial markers in patient's bone and generating noise data when 2D slice images are acquired by image modality because many markers are made of metal. Therefore, this paper developed shape-based registration technique to improve the limitation of fiducial marker based IGS system. Iterative Closest Points (ICP) algorithm was used to match corresponding points and quaternion based rotation and translation transformation using closed form solution applied to find the optimized cost function of transformation. we assumed that this algorithm were used in Total Knee replacement (TKR) operation. Accordingly, we have developed region-based 3D registration technique based on anatomical landmarks and this registration algorithm was evaluated in a femur model. It was found that region-based algorithm can improve the accuracy in 3D registration.

Standardization Study of Font Shape Classification for Hangul Font Registration System (한글 글꼴 등록 시스템을 위한 글꼴 모양 분류체계 표준화 연구)

  • Kim, Hyun-Young;Lim, Soon-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.3
    • /
    • pp.571-580
    • /
    • 2017
  • Recently, there are many communication softwares based on text on various smart devices. Unlike traditional print publishing, mobile publishing and SNS tools tends to utilize more decorative or more emotional fonts so that users can pass some feelings from contents. So font providers have released new fonts which deal with the requirements of the market. Nevertheless being released lots of new fonts, general users have not used them because they searched only by font name or font provider's name. It means that there is no way for users to know and find new things. In this study, we suggest font shape classification rules for font registration system based on font design features. We proved the validity of classification standard study through some experiments with 50 commercial fonts. Also the result of this study was provided for Korea Telecommunication Technology Association and adopted by the Korea industrial standard.

Accuracy of the Point-Based Image Registration Method in Integrating Radiographic and Optical Scan Images: A Pilot Study

  • Mai, Hai Yen;Lee, Du-Hyeong
    • Journal of Korean Dental Science
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the influence of different implant computer software on the accuracy of image registration between radiographic and optical scan data. Materials and Methods: Cone-beam computed tomography and optical scan data of a partially edentulous jaw were collected and transferred to three different computer softwares: Blue Sky Plan (Blue Sky Bio), Implant Studio (3M Shape), and Geomagic DesignX (3D systems). In each software, the two image sets were aligned using a point-based automatic image registration algorithm. Image matching error was evaluated by measuring the linear discrepancies between the two images at the anterior and posterior area in the direction of the x-, y-, and z-axes. Kruskal-Wallis test and a post hoc Mann-Whitney U-test with Bonferroni correction were used for statistical analyses. The significance level was set at 0.05. Result: Overall discrepancy values ranged from 0.08 to 0.30 ㎛. The image registration accuracy among the software was significantly different in the x- and z-axes (P=0.009 and <0.001, respectively), but not different in the y-axis (P=0.064). Conclusion: The image registration accuracy performed by a point-based automatic image matching could be different depending on the computer software used.

Automatic Segmentation of Renal Parenchyma using Graph-cuts with Shape Constraint based on Multi-probabilistic Atlas in Abdominal CT Images (복부 컴퓨터 단층촬영영상에서 다중 확률 아틀라스 기반 형상제한 그래프-컷을 사용한 신실질 자동 분할)

  • Lee, Jaeseon;Hong, Helen;Rha, Koon Ho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.4
    • /
    • pp.11-19
    • /
    • 2016
  • In this paper, we propose an automatic segmentation method of renal parenchyma on abdominal CT image using graph-cuts with shape constraint based on multi-probabilistic atlas. The proposed method consists of following three steps. First, to use the various shape information of renal parenchyma, multi-probabilistic atlas is generated by cortex-based similarity registration. Second, initial seeds for graph-cuts are extracted by maximum a posteriori (MAP) estimation and renal parenchyma is segmented by graph-cuts with shape constraint. Third, to reduce alignment error of probabilistic atlas and increase segmentation accuracy, registration and segmentation are iteratively performed. To evaluate the performance of proposed method, qualitative and quantitative evaluation are performed. Experimental results show that the proposed method avoids a leakage into neighbor regions with similar intensity of renal parenchyma and shows improved segmentation accuracy.

Abdominal-Deformation Measurement for a Shape-Flexible Mannequin Using the 3D Digital Image Correlation

  • Liu, Huan;Hao, Kuangrong;Ding, Yongsheng
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.3
    • /
    • pp.79-91
    • /
    • 2017
  • In this paper, the abdominal-deformation measurement scheme is conducted on a shape-flexible mannequin using the DIC technique in a stereo-vision system. Firstly, during the integer-pixel displacement search, a novel fractal dimension based on an adaptive-ellipse subset area is developed to track an integer pixel between the reference and deformed images. Secondly, at the subpixel registration, a new mutual-learning adaptive particle swarm optimization (MLADPSO) algorithm is employed to locate the subpixel precisely. Dynamic adjustments of the particle flight velocities that are according to the deformation extent of each interest point are utilized for enhancing the accuracy of the subpixel registration. A test is performed on the abdominal-deformation measurement of the shape-flexible mannequin. The experiment results indicate that under the guarantee of its measurement accuracy without the cause of any loss, the time-consumption of the proposed scheme is significantly more efficient than that of the conventional method, particularly in the case of a large number of interest points.

Effect of image matching experience on the accuracy and working time for 3D image registration between radiographic and optical scan images (술자의 영상정합의 경험이 컴퓨터 단층촬영과 광학스캔 영상 간의 정합 정확성과 작업시간에 미치는 영향)

  • Mai, Hang-Nga;Lee, Du-Hyeong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.3
    • /
    • pp.299-304
    • /
    • 2021
  • Purpose. The purpose of the present study was to investigate the effects of image matching experience of operators on the accuracy and working time of image registration between radiographic and optical scan images. Materials and methods. Computed tomography and optical scan of a dentate dental arch were obtained. Image matching between the computed tomography and the optical scan (IDC S1, Amann Girrbach, Koblah, Austria) was performed using the point-based automatic registration method in planning software programs (Implant Studio, 3Shape, Copenhagen, Denmark) using two different experience conditions on image registration: experienced group and inexperienced group (n = 15 per group, N = 30). The accuracy of image registration in each group was evaluated by measuring linear discrepancies between matched images, and working time was recorded. Independent t test was used to statistically analyze the result data (α = .05). Results. In the linear deviation, no statistically significant difference was found between the experienced and inexperienced groups. Meanwhile, the working time for image registration was significantly shorter in the experienced group than in the inexperienced group (P = .007). Conclusion. Difference in the image matching experience may not influence the accuracy of image registration of optical scan to computed tomography when the point-based automatic registration was used, but affect the working time for the image registration.