• 제목/요약/키워드: Shape Aspect Ratio

검색결과 368건 처리시간 0.022초

Viable Alternatives to in vivo Tests for Evaluating the Toxicity of Engineered Carbon Nanotubes

  • Kwon, Soon-Jo;Eo, Soo-Mi
    • 한국환경보건학회지
    • /
    • 제38권1호
    • /
    • pp.1-7
    • /
    • 2012
  • Carbon nanotubes (CNTs) stand at the frontier of nanotechnology and are destined to stimulate the next industrial revolution. Rapid increase in their production and use in the technology industry have led to concerns over the effects of CNT on human health and the environment. The prominent use of CNTs in biomedical applications also increases the possibility of human exposure, while properties such as their high aspect ratio (fiber-like shape) and large surface area raise safety concerns for human health if exposure does occur. It is crucial to develop viable alternatives to in vivo tests in order to evaluate the toxicity of engineered CNTs and develop validated experimental models capable of identifying CNTs' toxic effects and predicting their level of toxicity in the human respiratory system. Human lung epithelial cells serve as a barrier at the interface between the surrounding air and lung tissues in response to exogenous particles such as air-pollutants, including CNTs. Monolayer culture of the key individual cell types has provided abundant fundamental information on the response of these cells to external perturbations. However, such systems are limited by the absence of cell-cell interactions and their dynamic nature, which are both present in vivo. In this review, we suggested two viable alternatives to in vivo tests to evaluate the health risk of human exposure to CNTs.

급격산화법에 의해 제조된 $\delta$-FeOOH의 열분해과정 (The Thermal Decomposition Process of $\delta$-FeOOH Prepared by Rapid Oxidation Method)

  • 박영도;이훈하;김태옥
    • 한국세라믹학회지
    • /
    • 제31권12호
    • /
    • pp.1501-1506
    • /
    • 1994
  • The precipitate of FeCl2.4H2O and NaOH, Fe(OH)2 was rapidly made to oxidize by H2O2 to prepare $\delta$-FeOOH. The particle size, surface and morphology of $\delta$-FeOOH, and the shape and structure of thermally decomposed $\delta$-FeOOH were investigated by the use of high resolution STEM. $\delta$-FeOOH prepared under the condition of reaction temperature of Fe(OH)2 at 4$0^{\circ}C$, [OH-][Fe2+]=5 and aging time of 2 hr Fe(OH)2, had 630$\AA$ mean particle size, 4~5 aspect ratio, 20.8 emu/g saturation magnetization and 210 Oe coercivity. The edges of $\delta$-FeOOH were inclined to (001) about 41$^{\circ}$, 60$^{\circ}$ and coincident with (102), (101) respectively. When $\delta$-FeOOH was thermally decomposed at 25$0^{\circ}C$ for 2 hr in vacuo, which had micropores of 0.9 nm thickness and crystallites of 2.4 nm thickness. (001)hex, [10]hex. of $\delta$-FeOOH parallel with (001)hex, [100]hex. of $\alpha$-Fe2O3 respectively. This showed three dimensional topotaxial structure transition, which was investigated by SADP (Selected Area Diffraction Pattern) of STEM.

  • PDF

사각 덕트내 요철의 각도 변화에 따른 열전달 특성 (Augmented heat transfer in a rectangular duct with angled ribs)

  • 우성제;김완식;조형희
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.530-541
    • /
    • 1998
  • Heat transfer augmentation in a rib-roughened duct is affected by the rib configurations, such as rib height, angle of attack, shape, rib to rib pitch, and aspect ratio of a duct. These have been the main subjects in studying the average heat transfer and the friction loss of the fully developed flow. Investigating distributions of local heat transfer coefficients and flow patterns in a duct with the rib turbulators is necessary to find the characteristics of heat transfer augmentation and to decide the optimal configurations of ribs. In the present study the numerical analyses and the mass transfer experiments are performed to understand the flow through a rib roughened duct and the heat transfer characteristics with various angles of attack of ribs. A pair of counter-rotating secondary flow in a duct has a main effect on the lateral distributions of local mass transfer coefficients. Downwash of the rotating secondary flow, reattachment of main flow between ribs and the vortices near ribs and wall enhanced the mass transfer locally up to 8 times of that in case of the duct without ribs.

프레스 포밍 공정을 이용한 피팅 파이프 성형 조건 선정 (Determination of Forming Conditions of Fitting Pipes using Press Forming Processes)

  • 김태걸;박영철;박경용
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.101-106
    • /
    • 2012
  • The press bulging process is very useful and productive method to produce round-type mechanical components which have not been able to be manufactured because of limitation of the conventional press technology. The application of the press bulging process has expanded very quickly in the hydraulic and electronic industry and more recently it has been used to produce other mechanical parts such as the automobile and shipping parts. This expanding application also has brought some unsolved problems and leads many researchers to put their effort into the die design of the press bulging process. In this study, to obtain the optimum die shape for the press bulging process, various process parameters have been considered such as corner radius, bulging height, pressing length, and forming load, etc. The main interest of this paper is to verify the press bulging process which has more than 4.0 in height-length ratio. From this aspect, Finite Element analysis shows great ability to simulate the precise deformation process and gives us manufacturing database. Consideration of strain, stress, and strain-rate for the various cases has been also taken to keep the forming load within a particular range.

초소형 연소기에서의 연소 현상 실험적 연구 (Experimentally Investigation on Combustion Phenomena in Micro Combustor for the Application of Power MEMS)

  • 나한비;김세훈;최원영;권세진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.270-273
    • /
    • 2003
  • The characteristic of constant volume micro combustor was investigated experimentally. The shape of micro combustor was cylindrical and has row aspect ratio or has relatively large diameter compared with chamber height. Diameter and chamber height was varied to investigate the geometric effect of combustor on the flame propagation. Diameter of 15 mm and 7.5 mm was designed while chamber height was designed to be 1mm, 2mm, and 3mm. The effect of initial pressure was also investigated parametrically from 1bar to 3bar. The gas used in this study was stoichiometric mixture of methane and air. The maximum pressure achieved in down scaled combustors was lower than that of conventional combustor because heat loss to wall was dominant as expected. The maximum pressure responded favorably with the change of height of combustor and the initial pressure, the maximum pressure was also increased. The flame propagation was possible when the specific condition was satisfied. Although the quenching distance of stoichiometric mixture of CH4 and Air is 2.5 mm, the flame could propagate even under quenching distance as the initial pressure increased.

  • PDF

터빈 동익의 프로파일 정의 위치에 따른 초음속 터빈 성능변화에 대한 전산해석 연구 (Numerical Study of the Supersonic Turbine Performance Variation with respect to the Rotor Profile Diameter)

  • 박편구;정은환;김진한
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.297-301
    • /
    • 2007
  • 초음속 충동형 터빈과 같이 종횡비가 작은 경우 로터 익형은 반경방향으로 동일한 단면을 갖는 형태로 구현된다. 이 경우 터빈 로터는 터빈 동익의 프로파일 직경에 따라 설계에서 의도하지 않은 유로면적분포와 터빈 성능의 차이를 보인다. 본 연구에서는 터빈 동익 프로파일을 정의하는 직경이 터빈 성능에 미치는 영향을 고찰하기 위하여 3개의 다른 위치에서 정의된 터빈 로터에 대한 유동해석을 수행하고 결과를 고찰하였다. 계산 결과 팁에서 단면이 정의된 경우 설계에서 의도한 유로면적 변화를 보이며 다른 프로파일 직경에서 정의된 터빈에 비해 우수한 성능을 보임을 확인하였다.

  • PDF

굴절률 차이와 디지털 홀로그래피를 이용한 큰 단차측정 (Height Measurement by Refractive Index Difference and Digital Holography)

  • 조형준;김두철;유영훈;신상훈;이혁수
    • 한국광학회지
    • /
    • 제20권2호
    • /
    • pp.81-86
    • /
    • 2009
  • 디지털 홀로그램과 굴절률 차이를 이용하여 사용된 광원의 파장보다 큰 단차를 측정하는 연구를 하였다. 위상차를 측정하여 단차를 측정하는 방식에서는 위상차가 $2{\pi}$보다 큰 경우에는 원리상 단차를 구하기 어렵다. 이를 보완하기 위하여 굴절률 차이를 이용하여 인위적으로 광경로차를 줄여 파장보다 큰 단차를 측정할 수 있는 디지털 홀로그래피 시스템을 구성하였고, 실험적으로 파장의 약 3배 이상의 단차를 측정하였다.

Overview of Wood Plastic Composites: Focusing on Use of Bio-based Plastics and Co-extrusion Technique

  • Kim, Birm-June
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권5호
    • /
    • pp.499-509
    • /
    • 2014
  • Wood filler is a porous and anisotropic material having different size, shape, and aspect ratio. The use of wood fillers such as wood particle, wood flour, and wood pulp in wood plastic composites (WPCs) are growing rapidly because these wood fillers give improved strength and stiffness to WPCs. However, the wood fillers have originally poor compatibility with plastic matrix affecting the mechanical properties of WPCs. Therefore, to improve compatibility between wood and plastic, numbers of physical and chemical treatments were investigated. While the various treatments led to improved performances in WPC industries using petroleum-based plastics, full biodegradation is still issues due to increased environmental concerns. Hence, bio-based plastics such as polylactide and polyhydroxybutyrate having biodegradable characteristics are being applied to WPCs, but relatively expensive prices of existing bio-based plastics prevent further uses. As conventional processing methods, extrusion, injection, and compression moldings have been used in WPC industries, but to apply WPCs to engineered or structural places, new processing methods should be developed. As one system, co-extrusion technique was introduced to WPCs and the co-extruded WPCs having core-shell structures make the extended applications of WPCs possible.

방전드릴링의 가공특성 향상 (Improvement of Electrical Discharge Drilling)

  • 송기영;정도관;박민수;주종남
    • 한국정밀공학회지
    • /
    • 제27권10호
    • /
    • pp.45-51
    • /
    • 2010
  • Electrical discharge drilling (ED-drilling) is a widespread machining method used to bore small holes with a high aspect ratio. This paper presents additional methods by which ED-drilling can improve machining speed, tool wear, and machined surface quality. Firstly, for high machining speed, and low tool wear, a new-type electrode that was ground on one side or both sides of the cylindrical electrodes was suggested to expel debris. The debris which is generated during the machining process can cause sludge deposition and secondary discharge problems: major reasons to decrease machining speed. This new-type electrode also reduced tool wear that was due to the decrease of unstable discharge in a machining gap by helping to expel waste water and debris from the gap. Secondly, to improve the machined surface roughness, an electrolyzation process was included after drilling. This process made the machined surface smooth by means of an electrochemical reaction between an electrode and a workpiece. In this study, the machining speed, electrode wear, and surface roughness were improved by the newtype electrode and the electrolytic process.

Parametric Studies and Performance Analysis of a Biplane Micro Air Vehicle

  • Maqsood, Adnan;Go, Tiauw Hiong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권3호
    • /
    • pp.229-236
    • /
    • 2013
  • This paper presents the experimental investigation of a biplane micro air vehicle. The effects of geometric parameters, gap, stagger, and decalage angle are investigated at low Reynolds number (~150,000) in a low-speed wind tunnel. A rigid flat plate with an aspect ratio of one and square planform shape is used to evaluate all three geometric parameters. The side dimension of the single flat plate is 0.15 m. The goal is to find an optimal biplane configuration that should exceed monoplane performance by generating high lift and flying as slow as possible, in order to capture high-quality visual recordings. This configuration will directly help to fly at a lower velocity and to make tighter turns that are advantageous in restricted environments. The results show that the aerodynamic performance of the biplane MAV is significantly enhanced through the combination of gap and stagger effects. A performance comparison demonstrates the superiority of the optimal biplane configuration compared to a monoplane in cruise and glide phases. Moreover, no significant compromise is found for the range, endurance, and climb performance.