• Title/Summary/Keyword: Shape Aspect Ratio

Search Result 369, Processing Time 0.023 seconds

A Study on the Micro Parts Manufacturing Technology by Micro End-milling (마이크로 앤드밀링에 의한 미소 부품 가공기술 연구)

  • Je, T.J.;Lee, J.C.;Choi, H.;Lee, E.S.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.167-172
    • /
    • 2003
  • The machining method by using end-milling tool has been applying in machining structures of various shapes because of the availability. Recently, all kinds of industries based on the parts of micro shape are developing, and the demands of mechanical micro machining technology are Increasing suddenly to produce these parts. According to such changes, the technology of the micro end-milling machining is applying as one of the most important machining means. This research is to aim at developing machining technology for various micro structures using micro end-mill. This paper introduces micro mechanical machining system with ultra precision, and demonstrates methods manufacturing all sorts of parts and moldings for industry and examples of applicable machining by using micro end-milling tool of micro sizes from hundreds to tens in diameter.

  • PDF

Inelastic Behavior of the SRC Column (SRC 합성교각의 비탄성 거동)

  • Jung, In-Keun;Min, Jin;Shim, Chang-Su;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.300-307
    • /
    • 2005
  • Steel Reinforced Concrete (SRC) composite column has several advantage such as excellent durability, rapid construction, reduction of column section. Due to these aspect, applications of SRC columns to bridge piers are continuously increasing. For the design of relatively large SRC columns for bridge piers, it is necessary to check the current design provisions which were based on small section having higher steel ratio. In this study, seven concrete encased composite columns were fabricated and static tests were performed. Embedded steel members were a H-shape rolled beam and a partially filled steel tube. Based on the test results, the ultimate strength according to section details and local behavior were estimated. For the analysis of inelastic behavior of the SRC column, the cracked section stiffness of the columns was evaluated and compared with calculations. The stiffness of the cracked section showed that 25% of the initial value and this stiffness reduction occurred at 85% of the ultimate load in the experiments.

  • PDF

An Upper Bound Analysis for the Twisting Phenomenon of Extrusion of S shape from Round Billet (상계해법에의한 원형빌렛으로부터 S형 단며의 압출가공의 비틀림 해석)

  • 진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.130-135
    • /
    • 1997
  • A kinematically admissible velocity field is developed for the analysis of twisting of extruded products. The twisting of extruded product is caused by the linearly increased rotational velocity from the center on the cross-section of the workpiece at the die exit. In the analysis, the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is zero at the die entrance and is increased linearly by longitudinal distance from die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product changes with the aspect ratio of product and increases with the decreases in die length and in eccentricity of gravity center of the cross-section of workpiece at die entrance from that of the cross-section at the die exit.

  • PDF

Synthesis and electromagnetic properties of FeNi alloy nanofibers using an electrospinning method

  • Lee, Young-In;Choa, Yong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.5
    • /
    • pp.218-222
    • /
    • 2012
  • FeNi alloy nanofibers have been prepared by an electrospinning process followed by air-calcination and H2 reduction to develop electromagnetic (EM) wave absorbers in the giga-hertz (GHz) frequency range. The thermal behavior and phase and morphology evolution in the synthetic processes were systematically investigated. Through the heat treatments of calcination and H2 reduction, as-spun PVP/FeNi precursor nanofiber has been stepwise transformed into nickel iron oxide and FeNi phases but the fibrous shape was maintained perfectly. The FeNi alloy nanofiber had the high aspect ratio and the average diameter of approximately 190 nm and primarily composed of FeNi nanocrystals with an average diameter of ~60 nm. The FeNi alloy nanofibers could be used for excellent EM wave absorbing materials in the GHz frequency range because the power loss of the FeNi nanofibers increased up to 20 GHz without a degradation and exhibited the superior EM wave absorption properties compared to commercial FeNi nanoparticles.

Automatic Triangular Mesh Generation Over B-Spline Surfaces Including Arbitrary Holes (임의의 구멍을 포함하는 B-Spline 곡면상에서의 자동 삼각 요소망 생성)

  • 김근호;양현익
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • In the process of finite element analysis, mesh generation is tedious job which consumes tremendous time. Therefore, the automation of well shaped mesh generation from the minimal boundary input data is desirable to improve reliability and accuracy of the analysis and also to reduce the process time of the entire design process. The automation of triangular mesh generation has been relatively well treated due to its robustness and ease of handling when compared to rectangular element mesh generation. In this study, the offset method developed previously for generating plane rectangular element mesh has been corrected and modified to generate triangular element mesh on the B-spline surface having arbitrary holes. The result shows that the generated triangular mesh has the average aspect ratio over 0.9. The designed arbitrary surface shape has been interactively constructed by non-uniform B-spline theory for triangular mesh generation.

Module Synthesis in Flexible Architecture (유연한 구조의 모듈 합성)

  • 오명섭;권성훈;신현철
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.2
    • /
    • pp.140-150
    • /
    • 1995
  • A symbolic layout generator, called Flexible Module Generator (FMG), has been developed for transgorming a given CMOS circuit netlist into an optimized symbolic layout. Contrary to other conventional module generators which place transistors either in horizontal or in vertical direction, FMG places transittors in any hence can multiples of 90$^{\circ}$. This flexible layout style can maximize the diffusion sharing and hence can reduce the wire-length for both of area minimization and performance improvement. In FMG, transistors are initially randomly placed and then selected transistors are iteratively replaced using an optimization technique based on simulated evolution. Whenever a transistor is replaced, the affected nets are rerouted. Constraints on the shape, aspect ratio, and critical path delays are considered during the optimization process. Routing is performed by using a modified maze router on polysilicon, metal 1, and metal 2 interconnection layers. additional routing grids are added, if necessary, for complete routing. Unused rows or columns are removed after routing for area minimization. Experimental reasults show that FMG synthesizes satisfactory layouts.

  • PDF

Numerical Study on the Performance of PEMFC with Various Cross Sections of Channel (채널 단면형상 변화에 따른 PEMFC 성능 수치 연구)

  • Choi, Chi-Hwan;Moon, Chung-Eun;Lee, Kyu-Jung
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.186-192
    • /
    • 2005
  • A numerical study on the performance of a PEMFC was performed by using a CFD-ACE+commercial program. The effects of width, hight and shape of channel cross section and mass flow rate were investigated. In order to check the validity of the simulation, comparisons were carried out between predictions and experimental data available in the literature and shows the reasonable agreement. It is found that only the width of channel is strongly related to the performance of a PEMFC, while other factors have no marked effects.

  • PDF

Microscopic Investigation of the Strain Rate Hardening for Metals (금속재료 변형률속도 경화의 미시적 관찰)

  • Yoon, J.H.;Huh, H.;Huh, M.Y.;Kang, H.G.;Park, C.G.;Suh, J.H.;Kang, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.352-355
    • /
    • 2007
  • Polycrystalline materials such as steels(BCC) and aluminum alloys(FCC) show the strain hardening and the strain rate hardening during the plastic deformation. The strain hardening is induced by deformation resistance of dislocation glide on some crystallographic systems and increase of the dislocation density on grain boundaries or inner grain. However, the phenomenon of the strain rate hardening is not demonstrated distinctly. In this paper, tensile tests for various strain rates are performed in the rage of $10^{-2}$ to $10^2s^{-1}$ then, specimens are extracted on the same strain position to investigate the microscopic behavior of deformed materials. The extracted specimen is investigated by using the electron backscattered diffraction(EBSD) and transmission electron microscopy(TEM) results which contain grain size, grain shape, aspect ratio and dislocation substructure.

  • PDF

Level Ice Loads on Various Arctic Structures (극지대 구조물 형태에 따른 빙력고찰)

  • 조철희
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.20-27
    • /
    • 1996
  • Ice loads can determined by many factors like ice properies and dimension, velocity and type of structures. The magnitude of ice load varies with the failure mode which can be predicted by failure maps if the aspect ratio and strain rate are known. To reduce the ice force, various types of structure have been investigated and it is now known that the identor shape plays an important role in reducing ice load on Arctic offshoe structures. The conical and wedge structures are good applied examples in the Arctic region. In this study, ice forces on single wedge indentors are investigated for crushing failure mode. The ice loads on wedged indentors are compared with those on cylindrical structures. Also the concept of "ice annual"is introduced to verify the ice loads to multi and single wedge structures.tructures.

  • PDF

Fatigue Crack Growth Behavior of the Thin-to-Thick Type Stiffened Panels with Bonded Patch (접착 패칭된 박-후판 결합형 보강판의 피로균열성장 거동)

  • Rhee, Hwan-Woo;Kim, Seung-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.89-95
    • /
    • 2008
  • Fatigue cracked components often needs to be repaired during service. Standard repair schemes involve strengthening the component by connecting reinforcing members by means of rivets or welding by reducing the crack-tip stress intensity factors. Recent technological advances in fiber reinforced composite materials and adhesive bonding have led to the development of efficient repair schemes. In this study, the influence of various shape parameters on fatigue crack growth in the CCT type uniform thickness plates and the thin-ta-thick type stiffened panels repaired with woven fabric type Kevlar-Epoxy composite patch are studied experimentally.