• 제목/요약/키워드: Shape Analysis

검색결과 10,587건 처리시간 0.034초

가변스트레치성형 설계변수와 성형오차의 상관관계에 대한 통계적 연구 (Statistical Study on Correlation Between Design Variable and Shape Error in Flexible Stretch Forming)

  • 서영호;허성찬;강범수;김정
    • 소성∙가공
    • /
    • 제20권2호
    • /
    • pp.124-131
    • /
    • 2011
  • A flexible stretch forming process is useful for small quantity batch production because various shape changes of the flexible die can be achieved conveniently. In this study, the design variables, namely, the punch size, curvature radius and elastic pad thickness, were quantitatively evaluated to understand their influence on sheet formability using statistical methods such as the correlation and regression analyses. Forming simulations were designed and conducted by a three-way factorial design to obtain numerical values of a shape error. Linear relationships between the design variables and the shape error resulted from the Pearson correlation analysis. Subsequently, a regression analysis was also conducted between the design variables and the shape error. A regression equation was derived and used in the flexible die design stage to estimate the shape error.

선미 형상을 반영한 조종 유체력 미계수 추정에 관한 연구 (A Study on the Maneuvering Hydrodynamic Derivatives Estimation Applied the Stern Shape of a Vessel)

  • 윤승배;김동영;김상현
    • 대한조선학회논문집
    • /
    • 제53권1호
    • /
    • pp.76-83
    • /
    • 2016
  • The various model tests are carried out to estimate and verify a ship performance in the design stage. But in view of the cost, the model test should be applied to every project vessel is very inefficient. Therefore, other methods of predicting the maneuverability with confined data are required at the initial design stage. The purpose of this study is to estimate the hydrodynamic derivatives by using the multiple regression analysis and PMM test data. The characteristics of the stern shape which has an important effect on the maneuverability are applied to the regression analysis in this study. The correlation analysis is performed to select the proper hull form coefficients and stern shape factors used as the variables in the regression analysis. The comparative analysis of estimate results and model test results is conducted on two ships to investigate the effectiveness of the maneuvering hydrodynamic derivatives estimation applied the stern shape. Through the present study, it is verified that the estimation using the stern shape factors as the variables are valid when the stern shape factors are located in the center of the database.

경계요소법에 의한 축대칭 탄성체의 형상설계 민감도해석을 위한 직접미분법과 터빈 디스크의 형상최적설계 (Direct Differentiation Method for Shape Design Sensitivity Analysis of Axisymmetric Elastic Solids by the BEM and Shape Optimization of Turbin Disc)

  • 이부윤
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1458-1467
    • /
    • 1996
  • A direct differentiationmethod is presented for the shape design sensitivity analysis of axisymmeetric elastic solids. Based on the exisymmetric boundary integralequaiton formulation, a new boundary ntegral equatio for sensitivity analysis is derived by taking meterial derivative to the same integral identity that was used in the adjoint variable melthod. Numerical implementation is performed to show the applicaiton of the theoretical formulation. For a simple example with analytic solution, the sensitivities by present method are compared with analytic sensitivities. As an application to the shape optimization, an optimal shape of a gas turbine disc toinimize the weight under stress constraints is found by incorporating the sensitivity analysis algorithm in an optimizatio program.

경계법을 이용한 형상최적화 문제의 설계민감도 해석 및 응용 (A Boundary Method for Shape Design Sensitivity Analysis for Shape Optimization Problems and its Application)

  • 최주호;곽현구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.355-362
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in various problems. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-to-use features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem and fillet problem are chosen to illustrate the efficiency of the proposed methodology. Implementation issues for the sensitivity analysis and optimization procedure are also addressed in these problems.

  • PDF

Fluid-structure interaction analysis of deformation of sail of 30-foot yacht

  • Bak, Sera;Yoo, Jaehoon;Song, Chang Yong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권2호
    • /
    • pp.263-276
    • /
    • 2013
  • Most yacht sails are made of thin fabric, and they have a cambered shape to generate lift force; however, their shape can be easily deformed by wind pressure. Deformation of the sail shape changes the flow characteristics over the sail, which in turn further deforms the sail shape. Therefore, fluid-structure interaction (FSI) analysis is applied for the precise evaluation or optimization of the sail design. In this study, fluid flow analyses are performed for the main sail of a 30-foot yacht, and the results are applied to loading conditions for structural analyses. By applying the supporting forces from the rig, such as the mast and boom-end outhaul, as boundary conditions for structural analysis, the deformed sail shape is identified. Both the flow analyses and the structural analyses are iteratively carried out for the deformed sail shape. A comparison of the flow characteristics and surface pressures over the deformed sail shape with those over the initial shape shows that a considerable difference exists between the two and that FSI analysis is suitable for application to sail design.

CAD 형상을 활용한 설계 민감도 해석 (Shape Design Sensitivity Analysis using Isogeometric Approach)

  • 하승현;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.577-582
    • /
    • 2007
  • A variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions in analysis domain arc generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Thus. the solution space can be represented in terms of the same functions to represent the geometry. The coefficients of basis functions or the control variables play the role of degrees-of-freedom. Furthermore, due to h-. p-, and k-refinement schemes, the high order geometric features can be described exactly and easily without tedious re-meshing process. The isogeometric sensitivity analysis method enables us to analyze arbitrarily shaped structures without re-meshing. Also, it provides a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling. To obtain precise shape sensitivity, the normal and curvature of boundary should be taken into account in the shape sensitivity expressions. However, in conventional finite element methods, the normal information is inaccurate and the curvature is generally missing due to the use of linear interpolation functions. A continuum-based adjoint sensitivity analysis method using the isogeometric approach is derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of boundary. In isogeometric analysis, however, the geometric properties arc already embedded in the B-spline shape functions and control points. The perturbation of control points in isogeometric analysis automatically results in shape changes. Using the conventional finite clement method, the inter-element continuity of the design space is not guaranteed so that the normal vector and curvature arc not accurate enough. On tile other hand, in isogeometric analysis, these values arc continuous over the whole design space so that accurate shape sensitivity can be obtained. Through numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

  • PDF

이형인발공정 하중예측에 관한 연구 (Prediction of Drawing Load in the Shape Drawing Process)

  • 이태규;이찬주;이상곤;김병민
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.323-328
    • /
    • 2009
  • The prediction of drawing load is very important in the drawing process. However, it is not easy to calculate the drawing load for the shape drawing process through a theoretical model because of a complex arbitrary final cross section shape. The purpose of this study is to predict drawing load in shape drawing process. The cross section of product is divided with small angle as much as similar with fan-shape. The drawing load of each section was calculated by theoretical model of round to round drawing process. And the shape drawing load was determined by summation of drawing load of each section. The effectiveness of the proposed method was verified through the FE analysis and shape drawing experiment. It had a good agreement between proposed method, FE analysis and experiment within about 3% errors.

고령사회를 대비한 뉴 시니어 여성의 체간부 체형 분석 (Torso shape analysis of new senior women for the aged society)

  • 어미경;김아영
    • 한국의상디자인학회지
    • /
    • 제21권2호
    • /
    • pp.95-108
    • /
    • 2019
  • This study aims to determine the characteristics of new senior women's torso shapes. The data was collected from the 7th Size Korea, which analyzed 412 women between the ages of 55-69. A factor analysis was performed based on 20 indices, including eight based on circumference, eight based on height and length measurements, and four based on torso flattening. The results of the factor analysis suggest five main factors: torso silhouette, longitudinal size of the body, torso flattening rate, abdominal shape, and posterior longitudinal size. The results of the cluster analysis suggest three overall types: Type 1 is the inverted triangular obese shape which is characterized by large breasts, small buttocks, a short height, and a forward-bending posture; Type 2 is the rectangular, slim shape which is characterized by a forward neck and a flat front and back of the torso, and is the most slender among the three types; Type 3 is the large rectangular, overall obese shape, which is characterized by a round shape with large breasts, waist, and buttocks, and a forward-bending posture with a protruding back, and this is the most obese type. According to the results of the cross-tabulation, women aged 55-59 showed no trend in body shape; women aged 60-64 showed an increases in the inverted triangular obese shape and the large rectangular, overall obese shape; women aged 65-69 showed an increase in the large rectangular, overall obese shape and a decrease in the rectangular slim shape. In summary, new senior women showed body shape characteristics of being short, more obese having, a bent over posture. As they grew older, the curves disappeared, and the body becomes rounder. The study found that variation in body shape exists among new senior women in the aged society.

변위제약을 받는 평면트러스 구조물의 형태해석기법에 관한 연구 (A Study on the Shape Analysis Method of Plane Truss Structures under the Prescribed Displacement)

  • 문창훈;한상을
    • 전산구조공학
    • /
    • 제11권1호
    • /
    • pp.217-226
    • /
    • 1998
  • 본 논문은 변위제약모드를 갖는 트러스구조물의 형태해석을 목적으로 하였으며, 이를 위하여 해의 존재조건과 무어-펜로즈(Moore-Penrose) 일반역행렬을 이용하였다. 또한, 수치해석과정에서의 변위제약모드로는 호몰로지변형(homologous deformation)을 고려하여 해석하였고, 다음으로 다양한 변위제약모드와 절점에 작용하는 하중비를 만족하는 구조물의 형태를 구하였다. 본 논문에서의 형태해석문제는 지정된 변위를 만족하는 구조물의 형태를 찾는 일종의 역문제(inverse problem)로서 일반적인 구조해석과정과는 반대되는 입장에서 접근하였다. 또한, 본 논문에서는 수치해석과정에서 근사해의 정도를 향상시키기 위하여 뉴튼-랩슨법을 사용하였고, 수치해석예제로서 부재의 배열형태에 따라 3가지모델을 선택하였으며, 이들 모델을 통하여 적용한 해석기법의 정확성과 효율성을 검증하였다.

  • PDF

청소년 전기 남학생의 체형 유형화 및 유형별 체형 특성에 관한 연구 (Classification and Characteristics of the Body Shape for Early Adolescent Boys)

  • 김경아;서미아
    • 복식문화연구
    • /
    • 제13권3호
    • /
    • pp.344-360
    • /
    • 2005
  • The purpose of the study is to identify the physical characteristics of early adolescent boys, to classify body shapes by physical characteristic. The subjects were 549 boys in the capital area. Their body shapes were identified and classified based on 47 anthropometric measurements, 43 photographic measurements and 10 indexed measurements. For data analysis were performed descriptive statistics, factor analysis, cluster analysis, ANOVA and Duncan test using SPSS Ver. 10. According to the result of extracting factors indicating the characteristics of body shape, horizontal size, vertical length, lateral posture, the lateral shape of the abdomen and the hip, the shape of the back protrusion, the front shape of the trunk and was the shape of the shoulders. According to the result of classifying body shapes, four types of shape - T(Tall) type, P(Petite) type, L(Large) type and R(Regular) type were identified. The results of this study are expected to contribute to planning sizes according to the type of body shape and improving the fitness of ready-made clothes in apparel and school uniform manufacturers.

  • PDF