The Shannon sampling series is the prototype of an interpolating series or sampling series. Also the Shannon wavelet is one of the protypes of wavelets. But the coefficients of the Shannon sampling series are different function values at the point of discontinuity, we analyze the Gibbs phenomenon for the Shannon sampling series. We also find a way to go around this overshoot effect.
Journal of the Earthquake Engineering Society of Korea
/
v.7
no.4
/
pp.81-87
/
2003
In this paper, the feasibility of using Shannon's sampling theorem to reconstruct exact mode shapes of a structural system from a limited number of sensor points and localizing damage in that structure with reconstructed mode shapes is investigated. Shannon's sampling theorem for the time domain is reviewed. The theorem is then extended to the spatial domain. To verify the usefulness of extended theorem, mode shapes of a simple beam are reconstructed from a limited amount of data and the reconstructed mode shapes are compared to the exact mode shapes. On the basis of the results, a simple rule is proposed for the optimal placement of accelerometers in modal parameter extraction experiments. Practicality of the proposed rule and the extended Shannon's theorem is demonstrated by detecting damage in laboratory beam structure with two-span via applying to mode shapes of pre and post damage states.
Even though the Shannon wavelet is a prototype of wavelets are assumed to have. By providing a sufficient condition to compute the size of Gibbs phe-nomenon for the Shannon wavelet series we can see the overshoot is propotional to the jump at discontinuity. By comparing it with that of the Fourier series we also that these two have exactly the same Gibbs constant.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.18
no.2
/
pp.89-103
/
2018
A genius "Prince of Mathematician" Gaussian and "Father of Communication" Shannon comes up with the creative idea of motivation to meet each other? The answer is a coin leaf. Gaussian found some creative ideas in the matter of obtaining a sum of 1 to 100. This is the same as the probability distribution curve when a coin leaf is thrown. Shannon extended the Gaussian probability distribution to define the entropy, taking the source symbol and the reciprocal logarithm to obtain the weighted average. These where the genius Gaussian and Shannon meet in the same coin leaf. This paper focuses on this point, and easily proves Gaussian distribution and Shannon entropy. As an application example, we have obtained the capacity and transition probability of Jeongju seminal vesicle, and the Shannon channel capacity is 1 when the equivalent transition probability is 1/2.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.17
no.1
/
pp.59-68
/
2017
The flower and woman are beautiful but Euler's theorem and the symmetry are the best. Shannon applied his theorem to information and communication based on Euler's theorem. His theorem is the root of wireless communication and information theory and the principle of today smart phone. Their meeting point is $e^{-SNR}$ of MIMO(multiple input and multiple output) multiple antenna diversity. In this paper, Euler, who discovered the most beautiful formula($e^{{\pi}i}+1=0$) in the world, briefly guided Shannon's formula ($C=Blog_2(1+{\frac{S}{N}})$) to discover the origin of wireless communication and information communication, and these two masters prove a meeting at the Shannon limit, It reveals something what this secret. And we find that it is symmetry and element-wise inverse are the hidden secret in algebraic coding theory and triangular function.
Journal of the Institute of Electronics Engineers of Korea SD
/
v.45
no.3
/
pp.29-35
/
2008
Very efficient 6-ary runlength-limited codes for a six-level optical recording channel are presented when d = 3. The 6-ary(3, 15) code of rate 6/7 is given achieving coding efficiency of 98.87%. The efficiency of rate 13/15, (3, 20) code is 99.95%, which approaches the Shannon capacity. To increase the accurary of reading 6-ary signal, partial response modes are also investigated.
랜섬웨어는 사용자의 중요 파일을 암호화한 후 금전을 요구하는 형태의 악성코드로, 전 세계적으로 큰 피해를 발생시켰다. 안드로이드 환경에서의 랜섬웨어는 앱을 통해 동작하기 때문에, 앱의 악의적인 암호화 기능 수행을 실시간으로 탐지할 수 있는 방안에 대한 연구들이 진행되고 있다. 자원 제한적인 안드로이드 환경에서 중요한 파일들에 대한 암호화 수행 여부를 실시간으로 탐지하기 위한 방안으로 Shannon 엔트로피 값 비교가 있다. 하지만 파일의 종류에 따라 Shannon 엔트로피 값이 크게 달라질 수 있으며, 암호화 기능 수행에 대한 오탐이 발생할 수 있다. 따라서 본 논문에서는 파일에 대한 분할된 Shannon 엔트로피 값을 측정하여 암호화 기능 수행 탐지의 정확성을 높이고자 한다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.21
no.3
/
pp.51-57
/
2021
In this paper, the relevance between Einstein's special theory of relativity (1905) and Bernoulli's fluid mechanics (1738), which motivates Shannon's theorem (1948), was derived from the AB=A/A=I dimension, and the Shannon's theorem channel code was simulated. When Bernoulli's fluid mechanics ΔP=pgh was applied to the Hallasan volcano Magma eruption, the dimensions and heights matched the measured values. The relationship between Einstein's special theory of relativity, Shannon's information theory, and the stack effect theory of fluid mechanics was analyzed, and the relationship between volcanic eruptions was mathematically proven. Einstein's and Bernoulli's conservation of energy and conservation of mass were the same in terms of bandwidth and power efficiency in Shannon's theorem.
Seong-Ho Bae;Ho-Soon Yang;In-Ung Song;Sang-Won Park;Hakyong Kihm;Jong Ung Lee
Korean Journal of Optics and Photonics
/
v.35
no.5
/
pp.210-217
/
2024
We investigate the effects of mid-spatial frequency wavefront errors on the modulation transfer function (MTF) of optical imaging systems such as airborne cameras and astronomical telescopes. To reduce the prediction error of the MTF, an improved Shannon approximation is proposed. The Shannon approximation is useful for low-order wavefront errors, but it has limitations in predicting MTF with high-order wavefront errors, especially those caused by mid-spatial frequency errors from the manufacturing process of aspheric optical components. In this study, we analyze the impacts of concentric ring-shaped mid-spatial frequency wavefront errors on the MTF using MATLAB and Code V simulations and propose a method to improve the Shannon approximation, which has a new correction factor (K-factor).
The structural defects of a heart often reflects the sounds that the heart produces. This paper describes heart sound analysis method using Wavelet transform and average Shannon energy. This can extract the features of heart sounds in various disease identify the heart sounds. Experimental results show that the presented method has potential application in detecting various heart diseases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.