• Title/Summary/Keyword: Shallow water wave

Search Result 270, Processing Time 0.028 seconds

Climatological variability of surface particulate organic carbon (POC) and physical processes based on ocean color data in the Gulf of Mexico

  • Son, Young-Baek;Gardner, Wilford D.
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.235-258
    • /
    • 2011
  • The purpose of this study is to investigate climatological variations from the temporal and spatial surface particulate organic carbon (POC) estimates based on SeaWiFS spectral radiance, and to determine the physical mechanisms that affect the distribution of pac in the Gulf of Mexico. 7-year monthly mean values of surface pac concentration (Sept. 1997 - Dec. 2004) were estimated from Maximum Normalized Difference Carbon Index (MNDCI) algorithm using SeaWiFS data. Synchronous 7-year monthly mean values of remote sensing data (sea surface temperature (SST), sea surface wind (SSW), sea surface height anomaly (SSHA), precipitation rate (PR)) and recorded river discharge data were used to determine physical forcing factors. The spatial pattern of POC was related to one or more factors such as river runoff, wind-derived current, and stratification of the water column, the energetic Loop Current/Eddies, and buoyancy forcing. The observed seasonal change in the POC plume's response to wind speed in the western delta region resulted from seasonal changes in the upper ocean stratification. During late spring and summer, the low-density river water is heated rapidly at the surface by incoming solar radiation. This lowers the density of the fresh-water plume and increases the near-surface stratification of the water column. In the absence of significant wind forcing, the plume undergoes buoyant spreading and the sediment is maintained at the surface by the shallow pycnocline. However, when the wind speed increases substantially, wind-wave action increases vertical motion, reducing stratification, and the sediment were mixed downward rather than spreading laterally. Maximum particle concentrations over the outer shelf and the upper slope during lower runoff seasons were related to the Loop Current/eddies and buoyancy forcing. Inter-annual differences of POC concentration were related to ENSO cycles. During the El Nino events (1997-1998 and 2002-2004), the higher pac concentrations existed and were related to high runoffs in the eastern Gulf of Mexico, but the opposite conditions in the western Gulf of Mexico. During La Nina conditions (1999-2001), low Poe concentration was related to normal or low river discharge, and low PM/nutrient waters in the eastern Gulf of Mexico, but the opposite conditions in the western Gulf of Mexico.

A Study on Upper Ocean Response to Typhoon Ewiniar (0603) and Its Impact (태풍 에위니아 (0603) 통과 후 상층해양 변동 특성과 영향)

  • Jeong, Yeong Yun;Moon, Il-Ju;Kim, Sung-Hun
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.205-220
    • /
    • 2013
  • Upper ocean response to typhoon Ewiniar (0603) and its impact on the following typhoon Bilis (0604) are investigated using observational data and numerical experiments. Data used in this study are obtained from the Ieodo Ocean Research Station (IORS), ARGO, and satellite. Numerical simulations are conducted using 3-dimensional Princeton Ocean Model. Results show that when Ewiniar passes over the western North Pacific, unique oceanic responses are found at two places, One is in East China Sea near Taiwan and another is in the vicinity of IORS. The latter are characterized by a strong sea surface cooling (SSC), $6^{\circ}C$ and $11^{\circ}C$ in simulation and observation, under the condition of typhoon with a fast translation speed (8m $s^{-1}$) and lowering intensity (970 hPa). The record-breaking strong SSC is caused by the Yellow Sea Bottom Cold Water, which produces a strong vertical temperature gradient within a shallow depth of Yellow Sea. The former are also characterized by a strong SSC, $7.5^{\circ}C$ in simulation, with a additional cooling of $4.5^{\circ}C$ after a storm's passage mainly due to enhanced and maintained upwelling process by the resonance coupling of storm translation speed and the gravest mode internal wave phase speed. The numerical simulation reveals that the Ewiniar produced a unfavorable upper-ocean thermal condition, which eventually inhibited the intensification of the following typhoon Bilis. Statistics show that 9% of the typhoons in western North Pacific are influenced by cold wakes produced by a proceeding typhoon. These overall results demonstrate that upper ocean response to a typhoon even after the passage is also important factor to be considered for an accurate intensity prediction of a following typhoon with similar track.

The Performance Comparison Of FSK, BPSK, DPSK In Underwater Communication Channel (수중통신채널에서 FSK, BPSK, DPSK의 성능비교)

  • 박지현;백승관;노용주;윤종락
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.359-362
    • /
    • 2001
  • Analog communication systems using AM, FM modem have been developed. Digital communication systems using digital modems, which is by expansion of digital hardware skill have been recently developed. In order to accomplish a reliable communication it is important to overcome ocean environmental channel characteristics such as transmission loss, ambient noise and multipath effect etc. Specially, the effect of multipath is the most important element that determines the performance of underwater communication system in shallow water. Multipath channel can be divided a vertical and horizontal channel. the former is defined the channel to have large path-delay times between a direct wave and reflected waves. The latter shows relatively small path-delay times between a direct and reflected waves in compared with a vertical channel. In this paper, The performance of FSK, PSK and DPSK modem with respect to the vertical and horizontal multipath communication channels it described and compared.

  • PDF

Proposal of Empirical Formula for Bedform Size on West Coast of Korea (서해안의 해저표면형상 예측 경험식 제안)

  • Kim, Hyoseob;Yoo, Hojun;Jang, Changhwan
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.457-469
    • /
    • 2012
  • Bedform data at 4 shallow zones in the Yellow Sea where waves as well as tidal range are high and bed material is relatively coarse were collected and analyzed here. Water depths in the study area where the bedform data were collected are 10 ~ 65 meters, and ripple lengths well developed are between 6 ~ 13 meters. Existing empirical formula for prediction of ripple length as for coexistence of waves and currents include Khelifa and Ouellet(2000) and Soulsby(2005), both of which have been based on laboratory measurements, or field measurements at different physical environment from the Yellow Sea with respect to tidal range, wave strength, and bed material. New scaling factors are proposed here for better prediction of the ripple length on coastal zone in the Yellow Sea.

Experiment and Analysis of Mooring System for Floating Fish Cage (해상 양식시설의 계류시스템 실험 및 해석)

  • KIM Jin-Ha;KIM Hyeon-Ju;HONG Sup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.661-665
    • /
    • 2001
  • This paper deals with optimal mooring system to secure fish cage in a desired location, Through field investigation and paper works, we surveyed disasters by breakdown of cage frame and mooring system due to higher wave attack and selected compliant buoy mooring method for shallow water mooring system against severe coastal external forces. To analyze interaction between external forces and compliant buoy mooring system, theoretical model has developed as quasi-static nonlinear analysis. After verifying the feasibility of the numerical model compared with experiment, static analysis has tried for various mooring systems with different angle of array, number of mooring points, length of horizontal and inclined rope. Optimal mooring method using compliant buoy has selected for fish cage through numerical simulation. This results can apply for preliminary design for cage mooring system.

  • PDF

Evaluation of Dynamic Ground Properties of Pohang Area Based on In-situ and Laboratory Test (현장실험 및 동적실내실험을 이용한 포항지역 동적 지반특성 평가)

  • Kim, Jongkwan;Kwak, Tae-Young;Han, Jin-Tae;Hwang, Byong-Youn;Kim, Ki-Seog
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.9
    • /
    • pp.5-20
    • /
    • 2020
  • In 2017, after the Pohang earthquake, liquefaction phenomena were firstly observed after the observation of domestic earthquake by epicenter. In this study, various in-situ tests and laboratory tests were performed to determine the dynamic properties in (1) Songlim Park, (2) Heunghae-eup, Mangcheon-ri and (3) Heungan-ri, Pohang. As a site investigation, the standard penetration test (SPT), cone penetration test (CPT), multichannel analysis of surface wave (MASW), density logging, downhole test, and electrical resistivity survey were performed. In addition, cyclic triaxial test against sampled sand from site was also conducted. Based on the result, high ground water level and loose sand layer in shallow depth were observed for all sites. In addition, liquefaction resistance ratio of soil sampled from Songlim park was lower than those of Jumunjin sand, Toyoura sand, and Ottawa sand.

Measurement and simulation of high-frequency bistatic sea surface scattering channel in shallow water of Geoje bay (거제 내만해역에서의 고주파 양상태 해수면 음파산란 채널 측정 및 모의)

  • Choi, Kang-Hoon;Kim, Yongbin;Kim, Sea-Moon;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • High-frequency bistatic sea surface scattering channels according to sea state were measured at an experimental site of Geoje bay in April 2020, and compared with predictions based on scattering theory. A linear frequency-modulated signal with a center frequency of 128 kHz and a bandwidth of 32 kHz was used for the acoustic measurements. Sea surface wavenumber spectrum was calculated from surface roughness data measured by a wave buoy, and bistatic scattering cross-section of Small Slope Approximation (SSA) based on the wavenumber spectrum was estimated. In addition, scattering from near-surface bubbles using wind speed measured during experiments was considered. Surface scattering channel intensity impulse responses were simulated using the scattering cross-section and the simulation results were compared and analyzed with the field data.

Performance of selective combining according to channel selection decision method of frequency diversity in underwater frequency selective channel (수중 주파수 선택적 채널에서 주파수 다이버시티의 채널 선택 판정법에 따른 선택 합성법의 성능)

  • Lee, Chaehui;Jeong, Hyunsoo;Park, Kyu-Chil;Park, Jihyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.436-442
    • /
    • 2022
  • In this paper, the performance of the selective combining according to the channel selection decision method of frequency diversity is evaluated in the underwater frequency selective channel. The underwater acoustic channel in the shallow sea has a complex multipath characteristic by combining various environmental factors such as boundary surface reflection and sound wave refraction according to the water temperature layer. In particular, frequency selectivity due to multipath causes energy fluctuation in a communication channel, which reduces SNR (Signal to Noise Ratio) and deteriorates communication performance. In this paper, we applied the frequency diversity technique using multiple channels to secure the communication performance according to the frequency selectivity by multipath. For each channel, 4-FSK (Frequency Shift Keying) and selective combining were applied, the performance was evaluated by applying the maximum value, average value, and majority decision of the signal in order to decide the demodulation channel selection of the selective combining.

Seismic holding behaviors of inclined shallow plate anchor embedded in submerged coarse-grained soils

  • Zhang, Nan;Wang, Hao;Ma, Shuqi;Su, Huaizhi;Han, Shaoyang
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.197-207
    • /
    • 2022
  • The seismic holding behaviors of plate anchor embedded into submerged coarse-grained soils were investigated considering different anchor inclinations. The limit equilibrium method and the Pseudo-Dynamic Approach (PDA) were employed to calculate the inertia force of the soils within the failure rupture. In addition, assuming the permeability of coarse-grained soils was sufficiently large, the coefficient of hydrodynamic force applied on the inclined plate anchor is obtained through adopting the exact potential flow theory. Therefore, the seismic holding resistance was calculated as the combination of the inertia force and the hydrodynamic force within the failure rupture. The failure rupture can be developed due to the uplift loads, which was assumed to be an arc of a circle perpendicular to the anchor and inclines at (π/4 - φ/2). Then, the derived analytical solutions were evaluated by comparing the static breakout factor Nγ to the published experimental and analytical results. The influences of soil and wave properties on the plate anchor holding behavior are reported. Finally, the dynamic anchor holding coefficients Nγd, were reported to illustrate the anchor holding behaviors. Results show that the soil accelerations in x and z directions were both nonlinear. The amplifications of soil accelerations were more severe at lower normalized frequencies (ωH/V) compared to higher normalized frequencies. The coefficient of hydrodynamic force, C, of the plate anchor was found to be almost constant with anchor inclinations. Finally, the seismic anchor holding coefficient oscillated with the oscillation of the inertia force on the plate anchor.

Handling Method for Flux and Source Terms using Unsplit Scheme (Unsplit 기법을 적용한 흐름율과 생성항의 처리기법)

  • Kim, Byung-Hyun;Han, Kun-Yeon;Kim, Ji-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1079-1089
    • /
    • 2009
  • The objective of this study is to develop the accurate, robust and high resolution two-dimensional numerical model that solves the computationally difficult hydraulic problems, including the wave front propagation over dry bed and abrupt change in bathymetry. The developed model in this study solves the conservative form of the two-dimensional shallow water equations using an unsplit finite volume scheme and HLLC approximate Riemann solvers to compute the interface fluxes. Bed-slope term is discretized by the divergence theorem in the framework of FVM for application of unsplit scheme. Accurate and stable SGM, in conjunction with the MUSCL which is second-order-accurate both in space and time, is adopted to balance with fluxes and source terms. The exact C-property is shown to be satisfied for balancing the fluxes and the source terms. Since the spurious oscillations in second-order schemes are inherent, an efficient slope limiting technique is used to supply TVD property. The accuracy, conservation property and application of developed model are verified by comparing numerical solution with analytical solution and experimental data through the simulations of one-dimensional dam break flow without bed slope, steady transcritical flow over a hump and two-dimensional dam break flow with a constriction.