• Title/Summary/Keyword: Shallow water effects

Search Result 180, Processing Time 0.028 seconds

Effects of Ponding Depth Treatment on Water Balance in Paddy Fields (담수심 처리가 논의 물수지에 미치는 영향)

  • 손성호;정상옥
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.67-74
    • /
    • 2002
  • The purpose of this study was to investigate the effects of ponding depth treatment on water balance in paddy fields. Three ponding depth treatments, very shallow, shallow, and deep were used. The experimental plots were three 80m $\times$ 8m rectangular plots. Daily values of rainfall amount, ponding depth, irrigation water, drainage water, evapotranspiration, and infiltration were measured in the field. The ponding depth was continuously observed by water level logger during the growing season. The ET was measured by 1-m diameter PVC lysimeters. Irrigation water volume was measured by 75 mm pipe flowmeters and the drainage water volume by 75 mm pipe flowmeters and a recording Parshall flume. The results showed that irrigation water depths were 688.9 mm, 513.6 mm, and 624.4 mm in very shallow, shallow, and deep ponding, respectively. The effective rainfall amounts (effective ratio) were 243.7 mm(48.8%), 344.6 mm(68.9%), and 272.9 mm(54.6%) in very shallow, shallow, and deep ponding, respectively. The three treatments did not show any statistical difference in growth and yields. But the shallow depth treatment showed the largest yield.

The Effects of pending depth treatment on Water balance in paddy fields (담수심처리가 논의 물수지에 미치는 영향)

  • Son, Seung-Ho;Chung, Sang-Ok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.99-105
    • /
    • 2001
  • The purpose of this study is to investigate the effects of pending depth treatment on water balance in paddy fields. The pending depth treatments were very shallow, shallow and deep. The experimental plots were three $80m{\times}25m$ rectangular plots. Daily values of rainfall amount, pending depth, irrigation water, drainage water, evapotranspiration, infiltration, and piezometeric head were measured in the field. The pending depth was continuously observered by water level logger during the growing season. The ET was measured in 1m diameter PVC lysimeters. Irrigation water volume was measured by 75m pipe flow meter and the drainage water volume was measured by 25mm and 75mm pipe flow meters and a recording Parshall fulume. PVC pipe piezometers with 12mm diameter were used. The results of the water balance showed that irrigation water of 881.1mm, 735.4mm, and 532.6mm in very shallow, shallow, and deep pending, respectively. The effective rainfall was 182.6mm(44.6%), 254.7mm(62.2%), and 188.6mm(46.0%) in very shallow, shallow, and deep pending, respectively. The results show that the shallow pending depth looks the best of the three treatments.

  • PDF

Analysis of water balance for pending depth treatment in paddy fields (논 담수심 처리에 따른 관개용수량의 분석)

  • Park, Ki-Jung;Chung, Sang-Ok;Sohn, Seung-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.13-21
    • /
    • 2004
  • The purpose of this study was to investigate tile effects of pending depth treatment on water balance in paddy fields. Field experiment was performed in an experimental farm in Taegu, southern part of Korea during the rice growing season In 2001, 2002 and 2003. Experimental plots were three 8m ${\times}$ 80m rectangular plots. Three pending depth treatments, very shallow, shallow, and deep were used. Daily values of water balance components were measured in the field. The irrigation amounts measured at the experimental plots showed that the very shallow and the shallow ponded plots required smaller amount than the deep ponded plot. The shallow ponded plot saved irrigation water about 17.7% compared with the traditional deep ponded plot in 2001 The very shallow ponded plot saved irrigation water about 25.7% compared with the traditional deep ponded Plot in 2002, The shallow ponded plot saved irrigation water about 18% compared with the deep ponded plot in 2003.

Effect of subsurface flow and soil depth on shallow landslide prediction

  • Kim, Minseok;Jung, Kwansue;Son, Minwoo;Jeong, Anchul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.281-281
    • /
    • 2015
  • Shallow landslide often occurs in areas of this topography where subsurface soil water flow paths give rise to excess pore-water pressures downslope. Recent hillslope hydrology studies have shown that subsurface topography has a strong impact in controlling the connectivity of saturated areas at the soil-bedrock interface. In this study, the physically based SHALSTAB model was used to evaluate the effects of three soil thicknesses (i.e. average soil layer, soil thickness to weathered soil and soil thickness to bedrock soil layer) and subsurface flow reflecting three soil thicknesses on shallow landslide prediction accuracy. Three digital elevation models (DEMs; i.e. ground surface, weathered surface and bedrock surface) and three soil thicknesses (average soil thickness, soil thickness to weathered rock and soil thickness to bedrock) at a small hillslope site in Jinbu, Kangwon Prefecture, eastern part of the Korean Peninsula, were considered. Each prediction result simulated with the SHALSTAB model was evaluated by receiver operating characteristic (ROC) analysis for modelling accuracy. The results of the ROC analysis for shallow landslide prediction using the ground surface DEM (GSTO), the weathered surface DEM and the bedrock surface DEM (BSTO) indicated that the prediction accuracy was higher using flow accumulation by the BSTO and weathered soil thickness compared to results. These results imply that 1) the effect of subsurface flow by BSTO on shallow landslide prediction especially could be larger than the effects of topography by GSTO, and 2) the effect of weathered soil thickness could be larger than the effects of average soil thickness and bedrock soil thickness on shallow landslide prediction. Therefore, we suggest that using BSTO dem and weathered soil layer can improve the accuracy of shallow landslide prediction, which should contribute to more accurately predicting shallow landslides.

  • PDF

A Study on Sensitivity Analysis of the Hydrodynamic Derivatives on the Maneuverability Prediction of KVLCC2 in Shallow Water by Model Test

  • Nguyen, Van Minh;Nguyen, Thi Thanh Diep;Yoon, Hyeon Kyu
    • Journal of Navigation and Port Research
    • /
    • v.44 no.2
    • /
    • pp.98-109
    • /
    • 2020
  • In recent years, there have been concerted efforts toward predicting ship maneuvering in shallow water since the majority of ship's accidents near harbors commonly occur in shallow and restricted waters. Enhancement of ship maneuverability at the design stage is crucial in ensuring that a ship navigates safely. However, though challenging, establishing the mathematical model of ship maneuvering motion is recognized as crucial toward accurately predicting the assessment of maneuverability. This paper focused on a study on sensitivity analysis of the hydrodynamic coefficients on the maneuverability prediction of KVLCC2 in shallow waters. Hydrodynamic coefficients at different water depths were estimated from the experimental results conducted in the square tank at Changwon National University (CWNU). The simulation of standard maneuvering of KVLLC2 in shallow waters was compared with the results of the Free Running Model Test (FRMT) in shallow waters from other institutes. Additionally the sensitivity analysis of all hydrodynamic coefficients was conducted by deviating each hydrodynamic derivative from the experimental results. The standard maneuvering parameters including turning tests and zig-zag maneuvers were conducted at different water depths and their effects on the standard maneuvering parameters were assessed to understand the importance of different derivatives in ship maneuvering in shallow waters.

Effects of ponding depth treatment on evapotranspiration in paddy fields (담수심 처리가 논의 증발산량에 미치는 영향)

  • Sohn, Seung-Ho;Park, Ki-Jung;Chung, Sang-Ok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.9-12
    • /
    • 2002
  • The purpose of this study was to investigate the effects of ponding depth treatment on evapotranspiration in paddy fields. Three poding depth treatments, very sallow, shallow, and deep were used. The experimental plots were three $80m{\times}8m$ rectangular plots. Daily values of rainfall amount, ponding depth, irrigation water, drainage water, evapotranspiration, and infiltration were measured in the field. The ponding depth was continuously observed by observed nstaff during the growing season. The ET was measured by 1m diameter PVC lysimeters. Irrigation water volume was measured by 75 mm pipe flow-meters and the drainage water volume by 75 mm pipe flow-meters and a recording parshall flume. The results showed that irrigation water depths were 688.9 mm, 513.6 mm, and 624.4 mm in 2001, and 356.9 mm, 428.6 mm, and 513.2 mm in 2002 in very shallow, shallow, and deep ponding, respectively. The evapotranspiration were 465.0 mm, 484.1 mm, and 415.1 mm in 2001 and 461.3 mm, 476.3 mm, and 470.6 mm in 2002 in very shallow, shallow, and deep ponding, respectively.

  • PDF

Underwater Sound Propagation in a range-dependent Shallow water environment (비균질한 천해에서의 수중음파 전파)

  • Na, Jeong-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.64-73
    • /
    • 1987
  • Low frequency sound propagation in a range-dependent shallow water environment of the Korea Strait has been studied by using the adiabatic coupled mode, ADIAB. The range-dependent environment is unique in terms of horizontal variations of sound velocity profiles, sediment thickness and attenuation coefficients and water depths. For shallow source and receiver depths, the most important mechanism involved in the propagation loss is the depth changing character of mode functions that strongly depends on the local sound velocity profile. Application of the adiabatic coupled mode theory to shallow water environment is reasonable when higher modes are attenuated due to bottom interaction effects. Underwater sound propagation in a range-dependent shallow-water environment.

  • PDF

Effects of fended-Water Depth and Reclaimed Wastewater Irrigation on Paddy Rice Culture (담수심과 오수처리수 관개가 벼재배에 미치는 영향)

  • 윤춘경;황하선;정광욱;전지홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.55-65
    • /
    • 2003
  • Pilot study was conducted to examine the effects of ponded-water depth and reclaimed wastewater irrigation on paddy rice culture. For the ponded-water depth effect, three treatments of shallow, traditional, and deep water depths were applied, and each treatment was triplicated. The irrigation water for the treatment pots was an effluent from constructed wetland system for sewage treatment, while the control pot was irrigated with tap water kept traditional ponded-water depth. Irrigation water quantity varied with ponded-water depth as expected and drainage water quantity also varied similarly, which implies that shallow irrigation might save irrigation water and also reduce environmental impacts on downstream water quality. Rice growth and production were not significantly affected by ponded-water depth within the experimental condition, instead there was an indication of increased production in shallow and deep ponded-water depths compared to the traditional practice. Raising drainage outlet to the adequate height in paddy dike might be beneficial to save water resources within the paddy field. There was no adverse effect observed in reclaimed wastewater irrigation on the rice production, and mean yield was even greater than the control pots with tap water irrigation although statistically not significant. Water-saving irrigation by shallow ponded-water depth, raising the outlet height in diked rice paddy fields, minimizing forced surface drainage by well-planned irrigation, and reclaimed wastewater irrigation are suggested to save water and protect water quality. However, deviation from traditional farming practices might affect rice growth in long term, and therefore, further investigations are recommended before full scale application.

Practical Dispersion-Correction Scheme for Linear Shallow-Water Equations to Simulate the Propagation of Tsunamis (지진해일 전파모의를 위한 선형 천수방정식을 이용한 실용적인 분산보정기법)

  • Cho, Yong-Sik;Sohn, Dae-Hee;Ha, Tae-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1935-1939
    • /
    • 2006
  • In this study, the new dispersion-correction terms are added to leap-frog finite difference scheme for the linear shallow-water equations with the purpose of considering the dispersion effects such as linear Boussinesq equations for the propagation of tsunamis. And, dispersion-correction factor is determined to mimic the frequency dispersion of the linear Boussinesq equations. The numerical model developed in this study is tested to the problem that initial free surface displacement is a Gaussian hump over a constant water depth, and the results from the numerical model are compared with analytical solutions. The results by present numerical model are accurate in comparison with the past models.

  • PDF

Changes in the Hydrodynamic Characteristics of Ships During Port Maneuvers

  • Mai, Thi Loan;Vo, Anh Khoa;Jeon, Myungjun;Yoon, Hyeon Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.143-152
    • /
    • 2022
  • To reach a port, a ship must pass through a shallow water zone where seabed effects alter the hydrodynamics acting on the ship. This study examined the maneuvering characteristics of an autonomous surface ship at 3-DOF (Degree of freedom) motion in deep water and shallow water based on the in-port speed of 1.54 m/s. The CFD (Computational fluid dynamics) method was used as a specialized tool in naval hydrodynamics based on the RANS (Reynolds-averaged Navier-Stoke) solver for maneuvering prediction. A virtual captive model test in CFD with various constrained motions, such as static drift, circular motion, and combined circular motion with drift, was performed to determine the hydrodynamic forces and moments of the ship. In addition, a model test was performed in a square tank for a static drift test in deep water to verify the accuracy of the CFD method by comparing the hydrodynamic forces and moments. The results showed changes in hydrodynamic forces and moments in deep and shallow water, with the latter increasing dramatically in very shallow water. The velocity fields demonstrated an increasing change in velocity as water became shallower. The least-squares method was applied to obtain the hydrodynamic coefficients by distinguishing a linear and non-linear model of the hydrodynamic force models. The course stability, maneuverability, and collision avoidance ability were evaluated from the estimated hydrodynamic coefficients. The hydrodynamic characteristics showed that the course stability improved in extremely shallow water. The maneuverability was satisfied with IMO (2002) except for extremely shallow water, and collision avoidance ability was a good performance in deep and shallow water.