• Title/Summary/Keyword: Shallow parabolic arch

Search Result 4, Processing Time 0.018 seconds

A Study on Dynamic Stability Regions for Parabolic Shallow Arches (낮은 포물선(抛物線) 아치의 동적(動的) 안정영역(安定領域)에 관한 연구(硏究))

  • Park, Kwang Kyou;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.1-9
    • /
    • 1986
  • Dynamic stability of parabolic shallow arches, which are supported by hinges at both ends, is investigated. The Runge-Kutta method is used to perform time integrations of the differential equations of motion with proper boundary conditions. Based on Budiansky-Roth criterion, dynamic critical load combinations are evaluated numerically for cases of step loads of infinite duration and impulse loads, individually. The results are plotted to get interaction curves. The loci of the dynamic critical loads, which are obtained in this study, are proposed as boundaries between the dynamic stability and instability regions for the parabolic shallow arches. The results for the parabolic shallow arches are also compared with those for sinusoidal arches of the same arch rises. According to the investigation, the dynamic stability regions for the parabolic arches are larger than those for the sinusoidal arches. However, it is shown that the arch rise is the more governing factor than the shape.

  • PDF

Dynamic Stability Regions for Arches

  • Park, Kwang-Kyou;Lee, Byoung-Koo;Oh, Sang-Jin;Park, Kyu-Moon;Lee, Tae-Eun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.819-823
    • /
    • 2003
  • The differential equations governing the shape of displacement for the shallow parabolic arch subjected to multiple dynamic point step loads were derived and solved numerically The Runge-Kutta method was used to perform the time integrations. Hinged-hinged end constraint was considered. Based on the Budiansky-Roth criterion, the dynamic critical point step loads were calculated and the dynamic stability regions for such loads were determined by using the data of critical loads obtained in this study.

  • PDF

In-Plane Buckling Behavior of Fixed Shallow Parabolic Arches (고정지점을 갖는 낮은 포물선 아치의 면내 좌굴거동)

  • Moon, Jiho;Yoon, Ki-Yong;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.79-87
    • /
    • 2008
  • This paper investigates the in-plane stability of fixed shallow arches. The shape of the arches is parabolic and the uniformly distributed load is used in the study. The nonlinear governing equilibrium equation of the general arch is adopted to derive the incremental form of the load-displacement relationship and the buckling load of the fixed shallow arches. From the results, it is found that buckling modes (symmetric or asymmetric) of the arches are closely related to the dimensionless rise H, which is the function of slenderness ratio and the rise to span ratio of such arches. Moreover, the threshold of different buckling modes and buckling load for fixed shallow arches are proposed. A series of finite element analysis are conducted and then compared with proposed ones. From the comparative study, the proposed formula provides the good prediction of the buckling load of fixed shallow arches.

Determination of the Critical Buckling Loads of Shallow Arches Using Nonlinear Analysis of Motion (비선형 운동해석에 의한 낮은 아치의 동적 임계좌굴하중의 결정)

  • Kim, Yun Tae;Huh, Taik Nyung;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.43-54
    • /
    • 1992
  • For shallow arches with large dynamic loading, linear analysis is no longer considered as practical and accurate. In this study, a method is presented for the dynamic analysis of shallow arches in which geometric nonlinearity must be considered. A program is developed for the analysis of the nonlinear dynamic behavior and for evaluation of critical buckling loads of shallow arches. Geometric nonlinearity is modeled using Lagrangian description of the motion. The finite element analysis procedure is used to solve the dynamic equation of motion and Newmark method is adopted in the approximation of time integration. A shallow arch subject to radial step loads is analyzed. The results are compared with those from other researches to verify the developed program. The behavior of arches is analyzed using the non-dimensional time, load, and shape parameters. It is shown that geometric nonlinearity should be considered in the analysis of shallow arches and probability of buckling failure is getting higher as arches are getting shallower. It is confirmed that arches with the same shape parameter have the same deflection ratio at the same time parameter when arches are loaded with the same parametric load. In addition, it is proved that buckling of arches with the same shape parameter occurs at the same load parameter. Circular arches, which are under a single or uniform normal load, are analyzed for comparison. A parabolic arch with radial step load is also analyzed. It is verified that the developed program is applicable for those problems.

  • PDF