• Title/Summary/Keyword: Shallow Foundation

Search Result 189, Processing Time 0.022 seconds

Mapping of the lost riprap in shallow marine sediments using SBP (SBP를 이용한 해저 천부에 유실된 사석의 조사)

  • Shin, Sung-Ryul;Kim, Chan-Su;Yeo, Eun-Min;Kim, Young-Jun;Ha, Hee-Sang
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.220-221
    • /
    • 2005
  • Sub-bottom profiler(SBP) has been used extensively for the mapping of basement in the foundation design of offshore structure, for pre- and post-dredging operations within harbors and channels, for selection of pipeline routes, sitting of drilling platforms, and in the exploration for an aggregates such as sands and gravels. During the construction of Siwha embankment for irrigation water and the expansion of arable land, the breaking of an embankment unfortunately occurred so that a lot of riprap was swept away and widely dispersed by the tide and strong current. The feasibility study for the construction of the tidal-powered electric plant in Siwha embankment was performed quite recently. Therefore we made use of SBP survey to investigate the distribution of the lost riprap. We could successfully map out the distribution of the lost riprap from the reflection amplitude characteristics of the sediments in SBP data set. We demonstrated the variation of reflection amplitude versus the sediments with and/or without riprap by means of the numerical modeling of acoustic wave equation using finite difference method. Also we examined an amplitude anomaly of the ripraped area through the physical modeling using ultrasonic.

  • PDF

Ground stability analysis on the limestone region

  • Choi Sung O.;Kim Ki-Seog
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.281-287
    • /
    • 2003
  • A Natural cavities were found at shallow depth during construction of a huge bridge in Moon-Kyung, Korea. The distribution patterns of cavities in the Moon-Kyung limestone were investigated carefully with a supplementary field job such as a structural geological survey, a geophysical survey, and a rock mechanical test in laboratory or field. A structural geological mapping produced a detail geological map on this area. It suggested that there were three faults in this area, and these faults had an influence on the mechanism of natural cavities. Among many kinds of geophysical surveys, an electrical resistivity prospecting was applied firstly on the specific area that was selected by results from the geological survey. Many evidences for cavities were disclosed from this geophysical data. Therefore, a seismic tomography was tested on the target area, which was focused by results from the electrical resistivity prospecting and was believed to have several large cavities. A distinct element numerical simulation using the UDEC was followed on the target area after completing all of field surveys. Data from field tests were directly dumped or extrapolated to numerical simulations as input data. It was verified from numerical analysis that several natural cavities underneath the foundation of the bridge should be reinforced. Based on the project result, finally, most of foundations for the bridge were re-examined and the cement grouting reinforcement was constructed on several foundations among them.

  • PDF

Dynamic shear modulus and damping ratio of saturated soft clay under the seismic loading

  • Zhen-Dong Cui;Long-Ji Zhang;Zhi-Xiang Zhan
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.411-426
    • /
    • 2023
  • Soft clay is widely distributed in the southeast coastal areas of China. Many large underground structures, such as subway stations and underground pipe corridors, are shallow buried in the soft clay foundation, so the dynamic characteristics of the soft clay must be considered to the seismic design of underground structures. In this paper, the dynamic characteristics of saturated soft clay in Shanghai under the bidirectional excitation for earthquake loading are studied by dynamic triaxial tests, comparing the backbone curve and hysteretic curve of the saturated soft clay under different confining pressures with those under different vibration frequencies. Considering the coupling effects of the confining pressure and the vibration frequency, a fitting model of the maximum dynamic shear modulus was proposed by the multiple linear regression method. The M-D model was used to fit the variations of the dynamic shear modulus ratio with the shear strain. Based on the Chen model and the Park model, the effects of the consolidation confining pressure and the vibration frequency on the damping ratio were studied. The results can provide a reference to the earthquake prevention and disaster reduction in soft clay area.

Optimizing shallow foundation design: A machine learning approach for bearing capacity estimation over cavities

  • Kumar Shubham;Subhadeep Metya;Abdhesh Kumar Sinha
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.629-641
    • /
    • 2024
  • The presence of excavations or cavities beneath the foundations of a building can have a significant impact on their stability and cause extensive damage. Traditional methods for calculating the bearing capacity and subsidence of foundations over cavities can be complex and time-consuming, particularly when dealing with conditions that vary. In such situations, machine learning (ML) and deep learning (DL) techniques provide effective alternatives. This study concentrates on constructing a prediction model based on the performance of ML and DL algorithms that can be applied in real-world settings. The efficacy of eight algorithms, including Regression Analysis, k-Nearest Neighbor, Decision Tree, Random Forest, Multivariate Regression Spline, Artificial Neural Network, and Deep Neural Network, was evaluated. Using a Python-assisted automation technique integrated with the PLAXIS 2D platform, a dataset containing 272 cases with eight input parameters and one target variable was generated. In general, the DL model performed better than the ML models, and all models, except the regression models, attained outstanding results with an R2 greater than 0.90. These models can also be used as surrogate models in reliability analysis to evaluate failure risks and probabilities.

Seismic control of concrete rectangular tanks subjected to bi-directional excitation using base isolation, considering fluid-structure-soil interaction

  • Mohammad Hossein Aghashiri;Shamsedin Hashemi;Mohammad Reza Kianoush
    • Structural Engineering and Mechanics
    • /
    • v.92 no.1
    • /
    • pp.25-52
    • /
    • 2024
  • In the current paper, the various responses of concrete rectangular liquid storage containers under seismic load, each isolated by a lead-rubber bearing subjected to bi-directional earthquake forces are investigated. A parametric study is conducted to investigate the effects of isolation period, yield strength of the isolator and the effects of soil-foundation interaction for non-isolated and base-isolated tanks located on different soil types. In most cases, the value of base shear, base moment, wall displacement and hydrodynamic pressure is reduced by the effect of the isolators whose effective frequency is within the appropriate range. The sloshing displacement is amplified due to seismic isolation of the tanks for both tall and shallow tank configurations. Also, it is found that the seismic isolation technique is more efficient for the more flexible tank. Studying various soil types indicates that, unlike the responses of non-isolated tanks which change drastically for different soil types, the responses of base-isolated structures are less affected. Finally, it is observed that the variation in structural responses is not only related to the superstructure configuration and bearings properties but also depends on the earthquake specifications.

Soil Modelling Method to Design Bent Foundation with Drilled Shaft Pier (단일 현장타설말뚝의 설계시 지반 모델링 방법)

  • Jeon, Kyung-Soo;Han, Kyoung-Bong;Song, Pil-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.368-376
    • /
    • 2010
  • The bent foundation with single drilled shafts is suitable and economical in South Korea, which has good rock in a shallow depth. This foundation has been designed with an elastic design concept. To apply a plastic design concept written in Korea Bridge Design Criteria, a detail design regulation, which includes the method for a plastic hinge point to occur above the ground, rebar arrangement and soil modelling, should be defined. Soil modelling should be considered in the respect of structural engineer's practicality. In this paper, single drilled shaft piers with 1m diameter are constructed, and cyclic lateral load tests loaded at 4m above the ground are taken to examine the behavior. Reduced diameter shaft above the ground and remaining the steel casing under the ground were used to induce plastic hinge to occur above the ground. Simplified soil models such as elastic relation and p-y curve are adapted, and the prediction results are compared with test results. Prediction results of a model bridge were compared according to soil models with time domain analyses, and design criteria of soil were proposed.

  • PDF

A Study on groundwater and pollutant recharge in urban area: use of hydrochemical data

  • Lee, Ju-Hee;Kwon, Jang-Soon;Yun, Seong-Taek;Chae, Gi-Tak;Park, Seong-Sook
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.119-120
    • /
    • 2004
  • Urban groundwater has a unique hydrologic system because of the complex surface and subsurface infrastructures such as deep foundation of many high buildings, subway systems, and sewers and public water supply systems. It generally has been considered that increased surface impermeability reduces the amount of groundwater recharge. On the other hand, leaks from sewers and public water supply systems may generate the large amounts of recharges. All of these urban facilities also may change the groundwater quality by the recharge of a myriad of contaminants. This study was performed to determine the factors controlling the recharge of deep groundwater in an urban area, based on the hydrogeochemical characteristics. The term ‘contamination’ in this study means any kind of inflow of shallow groundwater regardless of clean or contaminated. For this study, urban groundwater samples were collected from a total of 310 preexisting wells with the depth over 100 m. Random sampling method was used to select the wells for this study. Major cations together with Si, Al, Fe, Pb, Hg and Mn were analyzed by ICP-AES, and Cl, N $O_3$, N $H_4$, F, Br, S $O_4$and P $O_4$ were analyzed by IC. There are two groups of groundwater, based on hydrochemical characteristics. The first group is distributed broadly from Ca-HC $O_3$ type to Ca-C1+N $O_3$ type; the other group is the Na+K-HC $O_3$ type. The latter group is considered to represent the baseline quality of deep groundwater in the study area. Using the major ions data for the Na+K-HC $O_3$ type water, we evaluated the extent of groundwater contamination, assuming that if subtract the baseline composition from acquired data for a specific water, the remaining concentrations may indicate the degree of contamination. The remainder of each solute for each sample was simply averaged. The results showed that both Ca and HC $O_3$ represent the typical solutes which are quite enriched in urban groundwater. In particular, the P$CO_2$ values calculated using PHREEQC (version 2.8) showed a correlation with the concentrations of maior inorganic components (Na, Mg, Ca, N $O_3$, S $O_4$, etc.). The p$CO_2$ values for the first group waters widely ranged between about 10$^{-3.0}$ atm to 10$^{-1.0}$ atm and differed from those of the background water samples belonging to the Na+K-HC $O_3$ type (<10$^{-3.5}$ atm). Considering that the p$CO_2$ of soil water (near 10$^{-1.5}$ atm), this indicates that inflow of shallow water is very significant in deep groundwaters in the study area. Furthermore, the P$CO_2$ values can be used as an effective parameter to estimate the relative recharge of shallow water and thus the contamination susceptibility. The results of our present study suggest that down to considerable depth, urban groundwater in crystalline aquifer may be considerably affected by the recharge of shallow water (and pollutants) from an adjacent area. We also suggest that for such evaluation, careful examination of systematically collected hydrochemical data is requisite as an effective tool, in addition to hydrologic and hydrogeologic interpretation.ion.ion.

  • PDF

Effects on the Jeju Island of Tsunamis Caused by Triple Interlocked Tokai, Tonankai, Nankai Earthquakes in Pacific Coast of Japan (일본 태평양 연안의 Tokai, Tonankai 및 Nankai의 3연동지진에 의한 지진해일이 제주도 연안에 미치는 영향)

  • Lee, Kwang-Ho;Kim, Min-Ji;Kawasaki, Koji;Cho, Sung;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.295-304
    • /
    • 2012
  • This study proposed a two-dimensional horizontal numerical model based on the nonlinear shallow water wave equations to simulate tsunami propagation and coastal inundation. We numerically investigated the possible impacts of tsunami caused by the triple interlocked Tokai, Tonankai and Nankai Earthquakes on the Jeju coastal areas, using the proposed model. The simultaneous Tokai, Tonankai and Nankai Earthquakes were created a virtual tsunami model of an M9.0 earthquake. In numerical analysis, a grid nesting method for the local grid refinement in shallow coastal regions was employed to sufficiently reproduce the shoaling effects. The numerical model was carefully validated through comparisons with the data collected during the tsunami events by 2011 East Japan Earthquake and 1983 central East Sea Earthquake (Nihonkai Chubu Earthquake). Tsunami propagation triggered by the combined Tokai, Tonanakai and Nankai, Earthquakes was simulated for 10 hours to sufficiently consider the effects of tsunami in the coastal areas of Jeju Island. The numerical results revealed that water level fluctuation in tsunami propagation is greatly influenced by water-depth change, refraction, diffraction and reflection. In addition, the maximum tsunami height numerically estimated in the coastal areas of Jeju Island was about 1.6 m at Sagye port.

Behavior of Bearing Capacity for Shallow Foundation on a Sand overlying Clay Depending on Bearing Capacity Ratio (점토층 위 모래지반의 지지력비에 따른 얕은 기초의 지지력 거동)

  • Jung, Min Hyung;Shin, Hyo Hee;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.198-208
    • /
    • 2011
  • When a structure which has relatively low load constructs on soft clay, the bearing capacity of the ground will be improved by sand overlying clay. In this condition, verifying the bearing capacity is difficult from the P.B.T etcetera in the in-situ. So, it is needed to estimate precise bearing capacity in the design process. In this study, 2-dimensional chamber tests and FEM analyses are conducted to evaluate behavior of bearing capacity for shallow foundations on a sand overlying clay. Because depth ratio H/B and bearing capacity ratio $q_c/q_s$ are selected as main factors, height of a sand, undrained shear strength of a clay and width of a loading are designated as variables. Results from chamber tests are very similar with those of FEM analyses. And it shows that punching shear mechanism is more suitable than the equation of Okamura et al.(1998). To make continual application of load spread mechanism, the equivalent load spread angle is proposed for H/B and $q_c/q_s$. Also, the linear regression equation of critical depth ratio Hf is suggested for $q_c/q_s$.

Uplift Capacity of Shallow Foundation for Greenhouse (온실용 얕은기초의 인발저항력 검토)

  • Yun, Sung Wook;Choi, Man Kwon;Lee, Si Young;Kang, Dong Hyeon;Moon, Sung Dong;Yu, Chan;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.187-195
    • /
    • 2015
  • In this study, a field test of uplift load was carried out using 15 greenhouse foundations fabricated in full scale on a sand soil to examine the uplift capacity of plastic film greenhouse and glasshouse foundations for disasterproof standard. As a result, the maximum uplift capacity of the target greenhouse foundations was shown to be in the range from 11.6kN to 82.4kN according to the differences between the forms and sizes of the foundation. As a result of the examination of the applicability using the field uplift load test result of the theoretical equation proposed for maximum uplift capacity calculation of greenhouse foundations, we found that in general, the conventional theoretical equation for the calculation provided numerical values close to the field test results. However, the soil considered in this study was a sand; thus, in the future, verifying the conventional theoretical equation for the uplift capacity calculation of a cohesive soil would be necessary.