• 제목/요약/키워드: Shaking-table tests

검색결과 331건 처리시간 0.022초

진동대 모형실험을 이용한 경사말뚝의 동적 거동 분석과 내진성능 향상을 위한 보강기법 개발 (Dynamic Behaviors of Behavior Piles and Countermeasures to Improve Their Seismic Performance Using Shaking Table Tests)

  • 황재익;이용재;한진태;김명모
    • 한국지반공학회논문집
    • /
    • 제21권2호
    • /
    • pp.105-111
    • /
    • 2005
  • 본 연구에서는 경사말뚝과 수직말뚝의 정적/동적 거동을 분석하고, 경사말뚝의 내진성능을 향상시키기 위한 보강방법을 제안하기 위하여 진동대 모형시험을 수행하였다. 첫 번째로 정적 횡방향 재하시험을 수행하여 정적 횡방향 하중을 받는 경사말뚝과 수직말뚝의 거동을 비교분석하였으며, 두 번째로 진동대 모형실험을 수행하여 말뚝머리에서 발생하는 축력과 침모멘트를 분석하여 지진하중에 대한 경사말뚝의 취약성을 확인하였다. 마지막으로 지진시 경사말뚝의 내진성능을 향상시킬 수 있는 보강기법을 제안하고 진동대 모형실험을 통하여 그 유효성을 확인하였다. 본 연구에서 경사말뚝의 내진 보강기법으로 말뚝머리와 상부갑판을 연결할 때 고정연결 대신 연성이 큰 고무와 힌지를 이용한 연결조건을 제안하였으며, 경사말뚝의 경사각이 수직 대 수평비가8:3 일 때 지진하중에 의해 경사말뚝에서 최소의 부재력이 발생하는 것을 확인하였다.

지진하중을 받는 말뚝 시스템의 고유 진동수 예측 (Prediction of the Natural Frequency of a Soil-Pile-Structure System during an earthquake)

  • 양의규;권선용;최정인;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.976-984
    • /
    • 2009
  • This study proposes a simple method that uses a simple mass-spring model to predict the natural frequency of a soil-pile-structure system in sandy soil. This model includes a pair of matrixes, i.e., a mass matrix and a stiffness matrix. The mass matrix is comprised of the masses of the pile and superstructure, and the stiffness matrix is comprised of the stiffness of the pile and the spring coefficients between the pile and soil. The key issue in the evaluation of the natural frequency of a soil-pile system is the determination of the spring coefficient between the pile and soil. To determine the reasonable spring coefficient, subgrade reaction modulus, nonlinear p-y curves and elastic modulus of the soil were utilized. The location of the spring was also varied with consideration of the infinite depth of the pile. The natural frequencies calculated by using the mass-spring model were compared with those obtained from 1-g shaking table model pile tests. The comparison showed that the calculated natural frequencies match well with the results of the 1-g shaking table tests within the range of computational error when the three springs, whose coefficients were calculated using Reese's(1974) subgrade reaction modulus and Yang's (2009) dynamic p-y backbone curves, were located above the infinite depth of the pile.

  • PDF

Shaking table tests on the seismic response of slopes to near-fault ground motion

  • Zhu, Chongqiang;Cheng, Hualin;Bao, Yangjuan;Chen, Zhiyi;Huang, Yu
    • Geomechanics and Engineering
    • /
    • 제29권2호
    • /
    • pp.133-143
    • /
    • 2022
  • The catastrophic earthquake-induced failure of slopes concentrically distributed at near-fault area, which indicated the special features of near-fault ground motions, i.e. horizontal pulse-like motion and large vertical component, should have great effect on these geo-disasters. We performed shaking table tests to investigate the effect of both horizontal pulse-like motion and vertical component on dynamic response of slope. Both unidirectional (i.e., horizontal or vertical motions) and bidirectional (i.e., horizontal and vertical components) motions are applied to soft rock slope model, and acceleration at different locations is reordered. The results show that the horizontal acceleration amplification factor (AAF) increases with height. Moreover, the horizontal AAF under unidirectional horizontal pulse-like excitations is larger than that subject to ordinary motion. The vertical AAF does not show an elevation amplification effect. The seismic response of slope under different bidirectional excitations is also different: (1) The horizontal AAF is roughly constant under horizontal pulse-like excitations with and without vertical waves, but (2) the horizontal AAF under ordinary bidirectional ground motions is larger than that under unidirectional ordinary motion. Above phenomena indicate that vertical component has limited effect on seismic response when the horizontal component is pulse-like ground motion, but it can greatly enhance seismic response of slope under ordinary horizontal motion. Moreover, the vertical AAF is enhanced by horizontal motion in both horizontal pulse-like and ordinary motion. Thence, we should pay enough attention to vertical ground motion, especially its horizontal component is ordinary ground motion.

고유주기에 따른 건축물의 수평진동에 대한 거주자의 허용가속도평가 (Evaluate of allowable acceleration for Occupants in Horizontal Vibration of Buildings according to Natural Frequency)

  • 조강표;정승환;조기성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.228-233
    • /
    • 2008
  • In this paper, peak acceleration for horizontal vibration of buildings was estimated from the results of vibration tests using a shaking table. Human comfort of occupants is supposed to be satisfied according to the peak acceleration in NBCC and ISO6897, which have been used by Korean structural engineers. In the paper, we used a one-dimensional shaking table for horizontal vibration tests, which was mounted with a vibration house similar to a living space. Experimental results were obtained according to increasing accelerations in the range of 0.2Hz through 1.2Hz of frequency with five experimental groups, each of which was composed of eight persons. We obtained performance curves by dividing the distribution of perception from horizontal vibration tests into the ranges of 0${\sim}$25%, 26${\sim}$50%, 51${\sim}$75%, 76${\sim}$100% and then fitting the curves. Also we made a questionnaire based on human comfort criteria of foreign countries, and examined the feelings of subjects. From the results of horizontal vibration tests, it was found that acceleration of perception was low when frequency was high, and that visual and auditory senses affect the human perception for horizontal vibration of buildings.

  • PDF

Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall

  • De Canio, Gerardo;de Felice, Gianmarco;De Santis, Stefano;Giocoli, Alessandro;Mongelli, Marialuisa;Paolacci, Fabrizio;Roselli, Ivan
    • Earthquakes and Structures
    • /
    • 제10권1호
    • /
    • pp.53-71
    • /
    • 2016
  • Unconventional computer vision and image processing techniques offer significant advantages for experimental applications to shaking table testing, as they allow the overcoming of most typical problems of traditional sensors, such as encumbrance, limitations in the number of devices, range restrictions and risk of damage of the instruments in case of specimen failure. In this study, a 3D motion optical system was applied to analyze shake table tests carried out, up to failure, on a natural-scale masonry structure retrofitted with steel reinforced grout (SRG). The system makes use of wireless passive spherical retro-reflecting markers positioned on several points of the specimen, whose spatial displacements are recorded by near-infrared digital cameras. Analyses in the time domain allowed the monitoring of the deformations of the wall and of crack development through a displacement data processing (DDP) procedure implemented ad hoc. Fundamental frequencies and modal shapes were calculated in the frequency domain through an integrated methodology of experimental/operational modal analysis (EMA/OMA) techniques with 3D finite element analysis (FEA). Meaningful information on the structural response (e.g., displacements, damage development, and dynamic properties) were obtained, profitably integrating the results from conventional measurements. Furthermore, the comparison between 3D motion system and traditional instruments (i.e., displacement transducers and accelerometers) permitted a mutual validation of both experimental data and measurement methods.

2층 철골 구조물에 설치된 무정전전원장치의 실규모 진동대 실험연구 (Full-scale Shaking Table Test of Uninterruptible Power Supply Installed in 2-stories Steel Structure)

  • 이지언;박원일;최경규;오상훈;박훈양
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권3호
    • /
    • pp.29-38
    • /
    • 2022
  • 본 연구에서는 실규모의 2층 철골 구조물에 7종의 건축 및 비건축 비구조요소를 설치하여 진동대 실험을 수행하였다. 진동대 실험은 현행 비내진상세와 면진장치를 적용한 실험으로 두 차례 수행되었으며 본 연구에서는 무정전전원장치(UPS)의 내진성능에 대하여 실험 및 분석하였다. 비내진정착상세로는 UPS 하단에 ㄷ형강 다리부가 설치되었고, 면진장치로는 고감쇠고무와 와이어로프로 구성된 개발 복합면진장치가 사용되었다. 지진하중모사를 위하여 ICC-ES AC156 (2010)에 따라 인공지진파를 생성 후, 동일 지진파의 크기를 점증하여 가진하였다. 진동대실험을 통해 복합면진장치의 적용여부에 따른 UPS의 거동 및 동적 특성(응답가속도, 응답변위, 동증폭계수, 고유진동수, 감쇠비)을 비교 및 분석하였다. 실험결과, 복합면진장치를 적용함에 따라 UPS의 고유진동수가 감소하여 응답가속도 및 증폭계수가 크게 감소하는 것으로 확인되었다.

진동대 실험을 통한 암반비탈면의 변위 거동 특성 (Displacements Behavior of Rock Slope by Shaking Table Test)

  • 윤원섭;강종철;박연준
    • 한국산업융합학회 논문집
    • /
    • 제23권2_2호
    • /
    • pp.245-254
    • /
    • 2020
  • This study investigated the so far little-researched characteristics of the behaviors of rock slopes at the time of an earthquake. For the selection of the rock block, a proper model was formed by applying the similarity in consideration of the roughness and strength of the rock slope(10m) on the site, and shaking table tests were carried out according to seismic excitement acceleration, and seismic waves. In the case of the inclination angle of the joint plane of 20°, the long period wave at 0.3g or more at the time of the seismic excitement surpassed the length of 100mm, the permissible displacement (0.01H, H:slope height), which brought about the collapse of the rock; the short period wave surpassed the permissible displacement at 0.1g, which caused the collapse of the slope. The rock slope was close to a rigid block and a structure more vulnerable to the long period wave than to the short period wave. It collapsed in the short period wave even at the seismic amplitude smaller than the maximum design acceleration in Korea.

지하철 진동에 대한 철골건물 기초진동 절연장치의 개발 및 진동대 실험 (Development and Shaking Table Tests of a Base Isolator for Controling Subway Train-Induced Vibration of a Steel Building)

  • 김진구;송영훈;권형오;허영
    • 소음진동
    • /
    • 제7권5호
    • /
    • pp.789-796
    • /
    • 1997
  • In this study a conventional rubber mount and a new form of base isolator made of steel spring coated with natural and articial rubber were manufactured and tested on a shaking table to investigate the capacity of reducing the vertical vibration of a building induced by subway train. The model structure used in the test is a 1/4 scaled steel structure, and a white noise input and train vibration records were used to check the effectiveness of the isolators. According to the results all three types of isolators turned out to perform effectively in reducing the acceleration and the natural rubber-coated one is ranked best among the isolators. However the vertical displacement of the model is increased due to the instolation of the bearings, and the safty against the lateral load induced by earthquake ground motion should be provided to be able to apply the system to the real buildings.

  • PDF

진동대 실험을 통한 외부보강형 판넬조립식 물탱크의 내진성능평가 (Seismic Performance Evaluation of Externally Reinforced Panel Water Tank Using Shaking Table Tests)

  • 박세준;원성환;최문석;김상효;정진환
    • 한국지진공학회논문집
    • /
    • 제17권4호
    • /
    • pp.151-157
    • /
    • 2013
  • In this study, an externally reinforced structural system for SMC(Sheet Molding Compound) panel water tank, designed according to the Japanese design code, is experimented to evaluate its seismic performance. The test tank is 3m long, 2m wide and 3m high, considering the capacity and size of the shaking table. The measured hydrodynamic pressures are found to be approximately 70% of the Japanese design code values. It may be partially due to the convex shape effect of the unit panels. The analytical results of externally reinforced system based on the measured dynamic water pressures are found in good agreement with the test results. If the design hydrodynamic pressures are estimated properly, the proposed analytical model for the externally reinforced water tank becomes a useful design tool and the Japanese design code is found to provide a safe design for the external frames of SMC panel water tank.

Experimental and numerical investigation of wire rope devices in base isolation systems

  • Calabrese, Andrea;Spizzuoco, Mariacristina;Losanno, Daniele;Barjani, Arman
    • Earthquakes and Structures
    • /
    • 제18권3호
    • /
    • pp.275-284
    • /
    • 2020
  • The scope of this study is the comparison between experimental results of tests performed on a base isolated building using helical wire rope isolators (WRs), and results of Nonlinear Response History Analyses (NRHAs) performed using SAP 2000, a commercial software for structural analysis. In the first stage of this research, WRs have been tested under shear deformation beyond their linear range of deformation, and analytical models have been derived to describe the nonlinear response of the bearings under different directions of loading. On the following stage, shaking table tests have been carried out on a 1/3 scale steel model isolated at the base by means of curved surface sliders (CSS) and WRs. The response of the structure under ground motion excitation has been compared to that obtained using numerical analyses in SAP 2000. The feasibility of modelling the nonlinear behavior of the tested isolation layer using multilinear link elements embedded in SAP 2000 is discussed in this paper, together with the advantages of using WRs as supplemental devices for CSSs base isolated structures.