• Title/Summary/Keyword: Shaking cod end

Search Result 3, Processing Time 0.018 seconds

Shaking Motion Characteristics of a Cod-end Caused by an Attached Circular Canvas during Tank Experiments and Sea Trials

  • Kim, Yonghae
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.3
    • /
    • pp.211-220
    • /
    • 2013
  • A shaking motion could be used to improve fish escapement from a cod-end net by creating a sieving effect over the swept volume or by disturbing the optomotor response of the fish. In this study, a perpendicular shaking motion was generated in a towed cod-end net by a circular canvas attached to the end of the codend, which formed a biased cap-like shape. This concept was tested by using a model in a flow tank and by towing a prototype cod-end during sea trials. For the model tests, the amplitude of the shaking motion was $0.6{\pm}0.1$ times the rear diameter of the cod-end, and the period of the shaking motion was $2.6{\pm}0.1$ s at a flow velocity of 0.6 or 0.8 m/s. In the sea trials, the amplitude was $0.5{\pm}0.2$ times the rear diameter of the cod-end, and the period of the shaking motion was $7{\pm}4$ s at towing speeds of 1.2 or 1.7 m/s. Thus, the shaking amplitude during the sea trials was equal to or less than that observed in the tank tests, and the shaking period was twice as long. The shaking motion described by the amplitude and period could be an effective means to stimulate fish escapement from cod-end during fishing operations considering the response of the fish.

Effects on bycatch reduction in a shaking cod end generated by canvas in a shrimp beam trawl

  • Kim, Yonghae;Whang, Dae-Sung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.3
    • /
    • pp.342-350
    • /
    • 2014
  • An active stimulating device, such as a fluttering net or canvas attached to the end of a cod end generating a shaking motion, could help to encourage the escape of juvenile fish positioned passively near the net. Field fishing trials using a shrimp beam trawl were carried out to examine the effect on the reduction of juvenile fish or other discard catch by generating a shaking movement of the cod end using an unbiased cap-like round canvas. The mean period of the shaking motion with the round canvas was ~14 s, and the mean amplitude was 0.4 m as measured by peak event analysis and the global wavelet method. The bycatch of juvenile fish in 14 trials decreased by ~30% and by ~25% using a steady cod end for the total bycatch using a shaking cod end in the shrimp beam trawl, while the marketing catch was similar between steady and shaking cod ends. There was no difference in the body size of the shrimp or fish and species composition between the steady and shaking cod ends. Above results demonstrate a new method for bycatch reduction using an active stimulating device, although more detailed studies are needed.

Bycatch Reduction by Experimental Shaking Codend Attached with Canvas in a Bottom Trawl

  • Kim, Yonghae
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.3
    • /
    • pp.325-332
    • /
    • 2015
  • An active stimulating method for juvenile fishes to drive escaping from mesh of the codend was examined by shaking canvas in the bottom trawl followed by shrimp beam trawl. Field fishing trials by a bottom trawl were carried out between the Geomoondo and Jejudo in west of South sea, Korea by conver-net methods to examine the effect on the reduction of juvenile fish as a discard catch by generating a shaking movement of the codend using two pieces of asymmetrical semi-circular canvas. The mean period of the shaking motion with the round canvas was 10-15 s, and the range of amplitude as a vertical depth change was up to 0.4-0.6 m when towing speed 3.4-4.3 k't as estimated by peak event analysis. The escape rate of juvenile fish in conver-net by total juvenile bycatch (codend and cover-net) in 14 trials increased from 20% in a steady codend to 34% using a shaking codend in the bottom trawl, while the marketing catch or total bycatch was similar between steady and shaking cod ends. There was no difference in the body size of the fish and species composition between the steady and shaking cod ends. Above results demonstrate a new method for bycatch reduction actually up to 18% using an active stimulating device, although further experiments are needed to increase an effective shaking motion of the codend in amplitude and period for more bycatch reduction.