• Title/Summary/Keyword: Shakedown

Search Result 27, Processing Time 0.024 seconds

An Experimental Study on the Effect of Wear Particles on the Sliding Behavior of Silver-Coated Bearing Steels (은 박막이 코팅된 베어링강의 마찰거동에 미치는 마모입자의 영향에 대한 실험적 고찰)

  • 양승호;공호성;윤의성;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.59-66
    • /
    • 2000
  • An experimental study on the effect of silver particles on the sliding behavior of bearing steels was performed by using a ball-on-disk tribometer. Tests were carried out in ambient air, dry and vacuum. Disks of AISI 52100 were silver-coaled by a thermal evaporation method, and the effects of silver particle transfer on friction were firstly analyzed. In order to understand further the mechanism of silver particles transfer and its effect on friction and wear, pre-compressed silver particles were artificially introduced into the friction interface and the results were compared to those of silver-coated specimens. Results showed that the introduced silver particles produced transfer layers and resulted in low friction. It also showed that this low friction is closely related to the characteristic behavior of transfer layers. Shakedown and rachetting occurred at the friction interface and affected the friction and wear.

  • PDF

Residual drift analyses of realistic self-centering concrete wall systems

  • Henry, Richard S.;Sritharan, Sri;Ingham, Jason M.
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.409-428
    • /
    • 2016
  • To realise the full benefits of a self-centering seismic resilient system, the designer must ensure that the entire structure does indeed re-center following an earthquake. The idealised flag-shaped hysteresis response that is often used to define the cyclic behaviour of self-centering concrete systems seldom exists and the residual drift of a building subjected to an earthquake is dependent on the realistic cyclic hysteresis response as well as the dynamic loading history. Current methods that are used to ensure that re-centering is achieved during the design of self-centering concrete systems are presented, and a series of cyclic analyses are used to demonstrate the flaws in these current procedures, even when idealised hysteresis models were used. Furthermore, results are presented for 350 time-history analyses that were performed to investigate the expected residual drift of an example self-centering concrete wall system during an earthquake. Based upon the results of these time-history analyses it was concluded that due to dynamic shake-down the residual drifts at the conclusion of the ground motion were significantly less than the maximum possible residual drifts that were observed from the cyclic hysteresis response, and were below acceptable residual drift performance limits established for seismic resilient structures. To estimate the effect of the dynamic shakedown, a residual drift ratio was defined that can be implemented during the design process to ensure that residual drift performance targets are achieved for self-centering concrete wall systems.

An elastoplastic bounding surface model for the cyclic undrained behaviour of saturated soft clays

  • Cheng, Xinglei;Wang, Jianhua
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.325-343
    • /
    • 2016
  • A total stress-based bounding surface model is developed to predict the undrained behaviour of saturated soft clays under cyclic loads based on the anisotropic hardening modulus field and bounding-surface theories. A new hardening rule is developed based on a new interpolation function of the hardening modulus that has simple mathematic expression and fewer model parameters. The evolution of hardening modulus field is described in the deviatoric stress space. It is assumed that the stress reverse points are the mapping centre points and the mapping centre moves with the variation of loading and unloading paths to describe the cyclic stress-strain hysteresis curve. In addition, by introducing a model parameter that reflects the accumulation rate and level of shear strain to the interpolation function, the cyclic shakedown and failure behaviour of soil elements with different combinations of initial and cyclic stresses can be captured. The methods to determine the model parameters using cyclic triaxial compression tests are also studied. Finally, the cyclic triaxial extension and torsional shear tests are performed. By comparing the predictions with the test results, the model can be used to describe undrained cyclic stress-strain responses of elements with different stress states for the tested clays.

An Exploratory Study of ERP System Implementation: Relationships between Completeness of Each Phase and its Impact on System Performance (ERP 시스템의 구축에 있어 단계별 완성도간의 관계분석 및 시스템 성과에 미치는 영향)

  • Park, Moon-Kyu;Lee, Jae-Jung;Jeong, Seung-Ryul
    • Information Systems Review
    • /
    • v.4 no.2
    • /
    • pp.237-255
    • /
    • 2002
  • In this study, we develop a four phase model of ERP implementation, which includes Chartering phase, Project phase, Shakedown phase, and Onward and upward phase. We then examine how the completeness of each phase influences the implementation success as well as the completeness of next phase. The results of this study show that project phase and onward and upward phase both have significant impacts on the implementation success. We also find that all relationships between the completeness of previous phase and next phase are significantly positive.

Local Structure Refinement of the $BaFe_{1-x}Sn_xO_{3-y}$ System with Fe K-Edge X-Ray Absorption (XANES/EXAFS) Spectroscopy

  • 김민규;곽기섭;로권선;여철현
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.743-749
    • /
    • 1997
  • Local structure refinement of the BaFe1-xSnxO3-y system (x=0.00-0.50) has been carried out with Fe K-edge x-ray absorpion spectroscopic studies. It is found out that the Fe ions are placed in two different symmetric sites such as tetrahedral and octahedral sites in the compounds by comparison with Fe K-edge x-ray absorption near edge structure (XANES) spectrum of the γ-Fe2O3 compound as a reference. Small absorption peaks of dipole-forbiden transitions appear at a pre-edge region of 7111 eV due to the existence of Fe ions in the tetrahedral and octahedral sites. The peak intensity decreases with the substitution amount of Sn ion. Three different absorption peaks of 1s→4p dipole-allowed transition appear on the energy region between 7123 and 7131 eV. The peaks correspond to 1s→4p main transition of Fe ions in tetrahedral and octahedral sites and 1s→4p transition followed by the shakedown process of ligand to metal charge transfer. The bond distances between Fe ions in the tetrahedral site and nearest neighboring oxygen atom (Fe-4O), and those in octahedral site (Fe-6O) are determined with the extended x-ray absorption fine structure (EXAFS) analysis. Two different interatomic distances increase with the substitution amount of Sn ion and also the bond lengths of Fe-4O are shorter than those of Fe-6O in all compounds.

Plastic deformation characteristics of disintegrated carbonaceous mudstone under dynamic loading

  • Qiu, Xiang;Yin, Yixiang;Jiang, Huangbin;Fu, Sini;Li, Jinhong
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.87-97
    • /
    • 2022
  • The excessive settlement and deformation of disintegrated carbonaceous mudstone (DCM) embankments under dynamic loading have long been problems for engineers and technicians. In this work, the characteristics and mechanism of the plastic deformation of DCM under different degrees of compaction, water contents and confining pressures were studied by static triaxial, dynamic triaxial and scanning electron microscopy testing. The research results show that the axial stress increases with increasing confining pressure and degree of compaction and decreases with increasing water content when DCM failure. The axial strain at failure of the DCM decreases with increasing confining pressure and degree of compaction and increases with increasing water content. Under cyclic dynamic stress, the change in the axial stress level of the DCM can be divided into four stages: the stable stage, transition stage, safety reserve stage and unstable stage, respectively. The effects of compaction, water content and confining pressure on the critical axial stress level which means shakedown of the DCM are similar. However, an increase in confining pressure reduces the effects of compaction and water content on the critical axial stress level. The main deformation of DCM is fatigue cracking. Based on the allowable critical axial stress, a method for embankment deformation control was proposed. This method can determine the degree of compaction and fill range of the embankment fill material according to the equilibrium moisture content of the DCM embankment.

A Study on the Strength Rating of Continuous Composite Plate Girder Bridges by ALFD (ALFD방법에 의한 연속합성판형교의 강도평가에 대한 연구)

  • Han, Sang Cheol;Chung, Kyung Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.213-222
    • /
    • 1999
  • Elastic-plastic methods have been used for the better prediction of the actual behavior of continuous-composite plate girder bridges in the overload and maximum load analysis. The structural evaluation using ALFD(Alternate Load Factor Design) uses the elastic-plastic analysis. The plastic rotations that remain after the load is removed can be occurred by the yielding locations of the maximum moment section. This situation can occur due to the residual stresses even if the moment is below the theoretical yield moment. The local yielding causes positive automoments that assure elastic behavior under subsequent overloads. In this study, the automoments at the piers occurred due to the unit plastic rotations and other locations were calculated by the conjugate-beam method and three-moment equation, using the nine design span with progressively smaller pier sections. The automoments were determined by the developed computer programs in this study in which the moments and plastic rotations from the continuity and moment-inelastic rotation relationships must be equal. And also the ratings of 3-span continuous composite plate girder bridges with non-compact section were carried out according to the Korean Highway Bridge Specification.

  • PDF