• Title/Summary/Keyword: Shaft-rates

Search Result 34, Processing Time 0.016 seconds

Validation of Actuator Gearbox Accelerated Test Method Using Multi-Body Dynamics Simulation (다물체 동역학 시뮬레이션을 이용한 작동기용 기어박스 가속시험법 검증)

  • Donggun Lee;Sanggon Moon;Young-Jun Park;Woo-Ram Shim;Sung-Bo Shim;Su-Chul Kim
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.22-30
    • /
    • 2024
  • Gearboxes designed for reciprocating motion operating mechanisms operate under conditions where both the load and speed undergo continuous variations. When conducting durability tests on gearboxes designed for such applications, operating the target gearbox under conditions similar to the intended usage is essential. The gearbox must be operated for the required number of cycles to validate its durability under conditions mirroring its intended usage. This study devised an accelerated test method for gearboxes, which reduces operating angles and operational strokes. The reliability of the accelerated test was verified by comparing the stresses imposed on the gears under general and acceleration conditions through multi-body dynamic simulations. The results confirmed that the maximum contact stress levels under normal and accelerated conditions were within a 0.1% error range, indicating a minimal difference in the gear damage rates. However, a difference in the maximum contact stress results between the normal and accelerated conditions was observed when inertial forces acted on the output shaft due to the operational acceleration of the gearbox. Therefore, when conducting this acceleration test, caution should be exercised to ensure that the operational load on the gearbox, which affects inertia, does not significantly deviate from the conditions observed under normal operating conditions.

A study on the air leakage performance improvement of duct coupling for temporary ventilation of long subsea tunnel (초장대 해저터널의 공사중 덕트 접속부의 누풍 성능 개선에 관한 연구)

  • Jo, Hyeong-Je;Min, Dea-Kee;Kim, Jong-Won;Lee, Ju-Kyung;Beak, Jong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.319-333
    • /
    • 2017
  • The construction of long sub-sea tunnel does not provide the favorable condition for the installation of ventilation system to be used during construction due to the constrained construction space. For the ventilation system required during construction, the artificial island where ventilation shaft is located is constructed at some location along the sub-sea tunnel route, which requires a high construction cost. Therefore, it is intended, as much as possible technically, to minimize the construction of artificial island. However, this requires a longer distance between ventilation shafts, there-by causing increased air leakage at the ventilation duct connection points due to the higher fan pressure being required to deliver ventilation air. Previously the air leakage was studied as an important issue. In this study experiments were carried out to develop the improved duct connection method considering various conditions such as, tunnel length, etc. Additionally, its performance results with leakage rates are shown and compared to the "S" class leakage rate of SIA. As a result, the new duct coupling type of improved method is analyzed as applicable to such a 30 km long tunnel with the leakage rate of $1.46mm^2/m^2$, which is better performance than SIA leakage rates.

Performance Evaluation of the Vibro Hammer with Variable Amplitude by Field Tests (현장실험을 통한 저진동·저소음 진폭가변형 진동해머 성능 평가)

  • Han, Jin-Tae;Lee, Joonyong;Choi, Changho;Park, Jeong-Yel
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.3
    • /
    • pp.1-12
    • /
    • 2015
  • During installing sheet piles for an impermeable wall or a retaining wall, vibratory hammers are widely used. Among vibratory hammers, a hydraulic hammer is used most commonly. However, a hydraulic hammer causes excessive vibration and noise due to resonance by change of natural frequency according to movements of eccentric shaft when the hammer starts and stops. In this study, new variable amplitude type hammer is developed in order to reduce the vibration and noise due to resonance produced in starting and stopping the hammer. By controlling horizontal angle in two pairs of eccentric body inside of the hammer, the amplitude and vibration of the new hammer can be controlled. The performance tests with the new hammer and existing hammers such as the hydraulic hammer and electric hammer are carried out, and the new hammer shows reduced vibration and noise results in comparison with existing hammers from performance tests. Also, this study shows that penetration rates of sheet pile using the new hammer increase due to impellent force of a backhoe in comparison with the electric hammer and penetration rate increase in comparison with a general hydraulic hammer, since the new hammer can control the amplitude during penetration of sheet pile according to soil condition.

Design Method for Cast-in-place Energy Pile Considering Equivalent Heat Exchange Rate (등가열교환율을 적용한 현장타설 에너지파일 설계법)

  • Min, Sunhong;Park, Sangwoo;Jung, Kyoungsik;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1049-1061
    • /
    • 2013
  • In this paper, a relative heat exchange rate is numerically compared for cast-in-place concrete energy piles with different heat exchange pipe configurations, and a new design method for energy piles is proposed. An equivalent heat exchange rate was estimated for the W-type (one series loop), multiple U-type (four parallel loops), and coil-type heat exchanger installed in the same large-diameter drilled shaft. In order to simulate a cooling operation in summer by a CFD analysis, the LWT (leaving water temperature) into a energy pile was fixed at $35^{\circ}C$ and then the EWT (entering water temperature) into a heat pump was monitored. In case of continuously applying the artificial maximum cooling load for 100 hours, all of the three types of heat exchangers show the marginally similar heat exchange rate. However, in case of intermittently applying the cooling load with a cycle of 8 hours operation-16 hours off for 7 consecutive days, the coil type heat exchanger exhibits a heat exchange rate only 86 % of the multiple U-type due to measurable thermal interference between pipe loops in the energy pile. On the other hand, the W-type possesses the similar heat exchange rate to the multiple U-type. The equivalent heat exchange rates for each configuration of heat exchangers obtained from the CFD analysis were adopted for implementing the commercial design program (PILESIM2). Finally, a design method for cast-in-place concrete energy piles is proposed along with a design chart in consideration of typical design factors.